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Abstract

A functional representation, which is u generclization of the linear convolution inte-
gral, is used to describe continuous nonlinear systems, Emphasis is placed on nonlinear
systems composed of linear subsystems with memory, and nunlinear no-memory
subsystems. An "Algebra of Systemas"” is developed to facilitate the deucription of auch
rombined systems, From this algebraic description, multidimensional system trans-
forms are obtained, These traraforms speclfy the system in much the same manner as
one -dimensional transforms specify linear systemo, The system transforms and the
transform of the system's input signal are then used to determin. the transform o. the
output signal, Transform theory is also used for determining averages and spectra of
the system outpui vhen the input is a random signal Gausr :nlv distributed. Certain
theoretical aspe. i4 of the fun~tional representation arc diz. ussed,
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1. INTRODUCTION

1.1 SYSTEM ANALYSIS

In physical analysis, a "system" is often used to specify the rela.ion between a cause
and an effect In system torminology, the cause is {he syelem input and the effect is the
output, This is repregented in Fig. 1, where x is the input signal and f is the output
signal. Usually these signals are functions of time. Of
the several general clussifications of aystems, the cluse

nit) | NONLINEAR tHr) that has been most successfully studied is the linear,
SYSTEM time-gtationary sy«'rr:, This report is concerned with
the nonlinear, stationary system — particularly the con-
Fig. 1. Noulinear system, tinuous nonlinear stationsry system, The continuous uon-

linear system will be described in detail in section 6,8,
The continuous concept !mplins a covtain degree of smoothness in the system's input.
outp'it relation, The linear system can be regarded as a special case of the coatinuous
nonlinear system.

The analysis of a system is dependent upon finding a mathematic .l description of the
relation between the system input and the system output. Clasaically, the relation is
obtained by means of a differential equation. Howaver, the present means of repre-
senting a linear system is by the convclution integral and its associated transforms.
The mathematical representation for nonlinear systems which forms the basis of this
report s iloesly related to these modern methods for linear system analysis,

1.2 'UNCTIONAL REPRESENTATION

A function f operates on a set of variables x tu produce & new set of variables t(x),
A functional, however, operates on a set of functions u-d produces & new set of functions
In other words, a functional is & .unction of a funoction,

The mathematical description used in thia report to represent a nonlinear system ls
the functional series:

f(t) = fmhl(r) x(t=r) dr +fw fm hz(-rl, rz) x(t-'rl) x(t--rz) dfld‘fz
-00 =-g0 =00

° “h {t=r)) {
LR ) ) h XN} tw e (it~ d anld L 1
j:n ./:m n'"l Ta) X(t=7) x Tn) " "n ()

where f(t) is the system output, and x(t) (s the aystem input. The firet ' n in this
series is the ordinary convolution integral that is ured for linear aystam annlysi». The
other terms are generalizations of this linear convolution term. In linerr system theory,
the function hl(t) is kuown as the "impulse response." !~ gectior 1,5, the function
hn(t,, e tn) will Lt shown to be a generallzed impulse rew, sus2. In this r-.port, *he




limi.a of integration, unless otherwise indicared, will be from -« to w,

1.3 HISTORICAL NOTE

These functionals were studied by Volterra {1) early in the twenticth vertury, In
1942, Wiener (2) first applied the functional series to the study o' a nonlinear electrical
circuit problem, He was concerned with computing the output moments of a detector
circuit w.th a random input. Later, he used this representation as the basis for a
canonical form for nonlinear systems (3).

More recently, the functiona! representation has been inveatigated by a number of
workers, Bose (3) investigatad the cauonical form problem and developad a system
that overcame many of the difficulties asaociated with Wiener's system. Brilliant (4)
was concerned with the validity of the functional representation, and found that systems
satisfying a certain continuity condition could be represented, He also zhowed that the
representation was well suited to the combining of nonlinear systems.

Wiener and others have extended the application of this functional representation,
in the random input case, beyond the results of Wiener's paper of 1942, Wiener (5)
developed the rigorous theory for random (white Gaussinn) inpits and applied the theory
to such situations as are found in FM apectra. Barratt's (6) paper ia an excellent expo-
sition of the state of this theory at the time the pregent work was undertaken.

1.4 COMPARISON OF THE FUNCTIONAL APPROACH WITH OTHER NONLINEAR
METHODS

The analysis of noulineuar systems has been an interesting problem for many years.
it {a therefore of b~ : it o compare the presnut glate of the functional approach with the
prinocipal classical methods., There are twu rnuuin classes of solutions to nonlinear prob-
lems: trunsient solutions, and rteady.state solutions,

Transient solutions are obtained classically by the solution of nonlinear diffevential
equations (7). For first-order equatirns, solutions can usually be obtained forinaily,
although numericas integration procedures may be required. However, buly spevial
forma of second -order equations can be suivid, Force-free soiutions for second -order
squations can be found with the phase-plane meihod — even for extremely violent nonlin-
earities, Examples of violent and nouviolent noniinearites aie shown in Fig. 2. Gen-
erally, numerical techniques must be used to sulve higher -order equations.

Sinusoidal steady-state solutions can be obtained for sysiems in which the first
harmonic is the only significant term, This is the basie for the "d.scribing function
method" (8), and for some others. System order iz not a limiting factor, nor, generally,
is the violence of the nonlinearity.

The functional series (Eq. 1) s a very general method for repre~-1ting nonlinear
systems (see pecs, 2,! and 6,8). [{fowever, at least in the present state of these methods,
it doea have a definite practical limitation, If the nonlinearities in a system are too
violeat, the number of terms required for a close approximation hecomes very large.
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Fig. 2. Violence of nonlinearities: (a) nonviolent nonlinearity
vacuum tube with "medium® aignal); (b) violent non-
linearity (ideal olipper),
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Applicstion graphs: () transient solutions; (b) steady -state solu-
tione. (Unbroken linys show the region covered by the functional

representation; broken lines show the region covered Ly the clam-
sioal methodl.s




It would then be necessary to res.ut! .i: a computer, and a great deal ¢’ the valuv it the
method would be lost. However, il the nonlinearities are sulficiently smooth, the frans-
ient regponse of a system is determined by the first few terma of the series, and there
is little limitation from system order. Also, steady-state solutions do not require that
the first harmonic be the only significant term

Th: comparisons that have just been made are illustrated graphically in Fig. 3, The
shaded areas show the regions of effectiveness of various methods of analys.s, However,
the grapns shruld not be taken to mean that these inethoda can cover all systems in the
shaded regiona, but only a significantly large numbker.

The first problem in s; stem analysis s to find a suitable mathematicul descriptinn,
This description is called the "system representation.® The functional representation
studied in this report has three important properties:

(a) it has vn explicit input -output relation.

(b) It tecilitates the combination of uystems,

(c) It allows the consideration of random inputs.

If a representation has an implicit — rather than explicit ~ inpnt-output relation, it means
that the whole problem must be re -gsolved for each different input, (The diffevential
equation representation is implicit.) Property (k) ir important because the electrical
engineer spends a great deal of time "putting things together." The effect of random
inputs ix a problem of grent interest to the engineer.

The classical methods based on the diiferential equation have none of theae proper -
ties, On the other hand, the significance of transform and copnvolution methods in linsar
system anmlysic . .ip heavily on theae properties, Therefore, these three properties
give tree distinot advantages to the functi-nal representation as compared with the
classical nonlinea methodn,

1.5 INTERPRETATION OF THE FUNCTIONAL sS&RIES

Having indicated the position of the functional representation in the general field of
ncnlinear system analysis, the writer would like to present an interpretation of the
functional series, First of all, the series (g, 1) can be viewed a+ n series of time
functions:

fey m £ (6) + £,(0) + 000+ L (0} 4,0 (2)

where
l‘n(t) ~f fhn(Tl.m.fn) x(t=7)) s x(t-r") dry oosdr (3)

That is, at some time t, we have a series of numburs fn(tl) that add up to give the
actual value of the system output f(tl). Also, eaah of the fuuctions fn(t) is gnun from
Eq. 3 to be the result of a convolution operation on the input time function x(t), ‘The

first term. f.‘(t). in particular, is recognized as bej ' the result of putting x(t) into a




linear system with an impulsc response, hll_t). Indeed, each term fn(t) can be viewed
as the output of a system wil: input x(t),
To taa.. advantage of this idea, we introduce an
operator notation, In this notation, if wn have a gen-
_L_.[—u_—} 1 eral nonlinear system with output :{t) and input x(t), as
" illustrated in Fig, 1, then we can write f!) = H[x(t)],
or if we make the time dependence implicit, { = lj[x].
Then *he symbol H represents the cperation that the
pyster. makes on input x to produce output f. In dia-
gram form, a nonlinear systewn: ls then represenied as shown in Fig. 4. (The usual
operator notation » is replaced by H in this rep:.'.}
The first term can be viewed a8 a linear system operation, and therefore

() = Hy[x®)]

Fig. 4, Nonlinear system.

or

ty = H,[x]

where the subscript "1" is added to the H notation to denote that the operation is Jinear,
Now, & linear system is specified by means of its impulse response; and thus, associated
with the linear system I;ll, there i an impulse response hl(t). and

£y(6) = [ () alter) ar
Now, tuc uto.ad “erm in the sevies (Bq. 2) is

tz(t) Iff hz(Tl‘ 'rz) x(t-'rl) x(t-'rz) dr,dr, (4)

If the input x(t) is changed by a =ain factnr € to give a new input €x(t), then the new
output, gz(t). in

gz(t) -ff hz(‘l'l. Tz) Gx(t--rl) (x(t-rz) dr,dr,
ar
2
€,(t) = €71, (1)

Thus, the seccnd term is the result of a quadratic (or squaring) operation, In the nper-
ator notation, then, f, = ﬂz[x]. where the subscript "2" indicates that this is & quadratic
operation, Similarly, f, = _J[x] and, in general, f = H [x]. Associated with each H
is the function h (t;,..., t,), and

0« [ [nfrpem ) wtien) o en) anany




In the light of these remarks, Eq, | can be rewritten as

f=Hylx]+Hlx]+ .. +H [x]+... «6)

That is, the system H has been brokea into a parallel combinarion of systems En' a3
ahown in Fig. ©. This i3 the desired inter-
preistion: The functional repregentation
represents a nonlinear system as a par-
allel bank of aystoms gn that are nth-
order nonlinear systems and have an
impulse-response function hn(tl. voes tn)
aspociated with them.
The next task is to show how these
functions hn(tl. . .tn) csn be interpreted
: as impulse reaponses, The linear case
) - ’ . is well known, 1f f; = H,[x], and x(t) =
Fig. 5. ?el::ude:ti.t?;’n‘w the functiona 5{t+T), an 1mpu1‘u at time ~T, then f,(0) =
hl(T). where hl(t) is the impulse response.
Now consider a generalization of the second term of the functional series

00 = [ [ 1yl 1) stter,) tory) ardn, )

and represent this operationally by
g " Ha(xY) (8)

Thia vperational form will be considered in sreater detail in section 2,2. The difference
between f, = gz[x] and g, = H,(xy) should be noted. The square brackets denote an actual
system operation, and the parentheger denote n mathematical operation on a pair of func -
tions. Such a form (Eq. 8) cannot occur by itself Lecause only single-input systeme w.v
being studied. However, it can ocour in combination with other terms. Consider the
system operation f, = ﬂz[x+y].

Using Eq. 4 (the actuul functional relation) with Eqs, 7 and 8, we obtain

ty = Hy(xx) + Hy(xy) + 5, (yx) + H,(yy)

but hz(tl' tz) is a symmetrical function, and so
t, = Hyix?) + 2H, (xy) + Hy(y%) (9)
2 Tl 2%y + Maly

where xx = xz and yy = yz. In the functional form for the second -ordetr case (Eq. 7),
with h)(t),t,) % h,(t,, t,), the symmetrical function [h,(t;, t,)+h,(t,,t,)|/2 can be formed
and subsiituted for h,(t).t,) without affecting f,(t). This proeedure (5) genera..zes to
hn(tl. tees tn). and 80 {t will generally be assumed in this report that hn(tl‘ e tn) isn




symmetrical function in tl' tz. coae by
In Eq. 9, jjz(xy) has Leen obtained, hut it is {1 combination with two other terms,
Figure 6 shows how ﬂz(xy) ca. be isclated experimentally. If the indic~*cd operstions
were nerformed sequentially, only ou?
systern ﬂz would be naeded. In the system
of Fig. 6, if xit) = b(H'rl) and y(t) = 6(t+T2),
Halanis then the output p is p - uz(xy), und, at
- time 0, p(0) = h,(T|, T,). Thia is proved
by substituting these values of x(t) and y(t)
in &y, 7. Thus, hy(t,,t,) can be inter-
Fig. 6. Apparatus for isolating l-_lz(:.'y). preted as vn impulse response in A m:naer
similar to the interpretation of the linear
reBponse ht(t). ‘This approach can be generalized to the n"' -order case, and all func-
tiona hn(tl. . .tn) may be calied impulse respcasas. In section 4.8 we shall be con-
cerned with measuring these {inpulse reaponses.
To summarise, the functional series may be regarded as representing a nonlinear
system as a paraliel bank of nunlinear subsyateins (or operators). Eack of these aub-
systems is specified by an impulse response, hn(tl. cenity)

vit) e Berevy)

yit)eBLIsTy)

1.6 SYSTEM TRANSFORMS

Il Jhe ‘nonjee responses "z“r ces .tn) are known for a system, then the output f(t),
tor a given in_.. aw), can be obtained from Eq, 1. However, the analysis of linear sys -
tems has been grestly aided by the fact that "cunvolution in the time domain is multiplica-
tion in the frequency domain." An analogous recsult holds for nonlinear systems — except
that multiple -order transformations must be used.

These transforms are def’ ad by ti.e transform pairs:

Y(-l.....in) -f...fy(tl.....tn) up(nltl*...ﬂntn) dt) ... dt, (19)

and
Y(tl, ....tn) - (F’n'j)nf“‘fy('l““"n) exp(-lltl-...-untn) ds, ... ds, (11)

Appropriate contours of integration and values of 8). 8;, and so on can be chosen in a
manner similar to that in the linear transform case to give Fourier or Laplace trans-
formations,

The value of the higher «order transform theory lies in the fact th..

f... fhn(vl,...,fn) kn(tl-fl....,tn-'r“) dv, ...odry (12)

th

nas an n' -order transform, Hn(ll. cere In) Kn(l|, R




Now, consider

I(z)(tl,tz) =ff hz(-rl, TA) x(tl-'rl) x(tz—-rz) dr,dr, (13)

which is a special case of Eq. 12, and thus will have a transform, F(z)(sl"z) =

Hy(s,,8,) x(ul) X(s,). We are interested in the special case of Eq. 13, witht, =t, =1,
Then

fz(t) = f(.‘!)(t' t) =ff hz(fl, -rz) x(t--rl) x(t-fz) drld'rz (14)

which is the second term in the funciional series, 3imilarly, the ocutput ot .. nm ~order
system can be made artificlally a function of ty eens b in order to take advantage of
transform theory., The discussion at this point is only intended to detine the transforms
and indicate their possible application, 1In Section III we shall show how the transforms
can be used to obtain the systera output,

1.7 SUMMARY

We have given an introduction to the functional representsation for nonlinear systems.
This functional method can be used to solve a large class of nonlinear problems in which
the classical methods fail, but it does have certain limitations, certainly, at the present
stage of development, Furthermore, the functional representation has three very desir-
able prof.»*i~> *hat mare it a me*hod of considerable strength and value,

We have seen that the representatics may be viewed as a parallel bank of nonlinear
operations or subsystems, These subsystems are generalications of the ordinary Mnear
convolution operation, and are specified by impulse responses, Finally, the higher-
order transform has been introduced, and its poli-:tial use indiomted,




1I. AN ALGEBRA OF SYSTEMS

2,1 INTRODUCTION

The secund property of the functional representation iy that it facilitates the com-
bination of systems. This property was noticed by Brilliant (4), and he obtained formu-
las for finding the impulse responses & «d transforms of the component sibsystemas,
However. these formulas are difficult tu use, and do not indicate how the components of
a system combine to produce the over -all aystem, These difficulties can be overcome
by ineans of a representation in which the whole sys::m can be expressed by a single
equation, This representation, which is called the "Algebra of Systems," makes use of
the operator syatem notation that was introduced in section 1.5,

I R ECCl o P

te)

Fig. 7. Examples of nonlinear systems: (a) nonlinear capacitor;
(t) do motor,

We are primarily concerned with a certain class of physical systems. In this class,
the systems are composed of:
(a) nonlinear subsystems with no memory (that {s, the outputs depend on (Le instan-
taneous value of the input and are independent cf the past or future values of the input);
(b) linear subsystems that, in general, have memory.
Thig class of systems is of a very general nature. The only cluss ol sysiem that appears
t0 be definitely excluded ia the hysteretic system. Two examples are ahown in Fig. 7,
The nonlinear capacitior, viewed as & system, is equivalent to an integrator followed

oy & nonlinear no-memory operation, We can see this by considering the capacitor equa-
tion

e = n(y) (15)

where e represents voltage and q, charge, and the functi *+ » represents he nonlinear
relation betweer charge and voltage, Then




»t
qlt) =J' ift) at (16)
=00

where i{t) is the current. Thr block diagram of Fig. 7a shows this rel.:.jon between cur-
rent and voltage.
The relation between the speed w and the armature voltage ¢ of the dc motor is given

by
en k1 {w+n(w)+kz g%} (17)

where k, and k, are constants, and n is a function representing the nonlinear character -
istic of the motor. Thus, the motor is equivalent to the circuit shown in Fig. 7, with
Cuk, (see Truxal (8)).

We know how to describe the linear syidtem and the nonlinear no~-memory system.
The linear system can be described by its impulsc response or transform, and the non-
lincar no-memory system can b2 described by a function relating its input and output.
The use of the functional representation depends on our being able to write, or approx-
imate, this nonlinear function by a power series or a polynomial, For example, the
saturating system of Fig. 2a can be approximated over a desired interval by

foax+ l,x’ +00 t azn“xzn“ (18)
The ideal clipper of Fig. 2b, on the other hand, would require an extremely large n for
approvimetion in the form of Eq, 17. This is a practical limitation, Even very violent
nonlinearitivé, ~:L.. «e the ideal clipper. aan, theoretically, be very closely approxi-
mated by a polynomial,

Now the situation is: We are given a sys*em in which the component subaystems are
linear, or nonlinear no-memory, and we want to dorcribe the over-all system by the
functional representation. To ‘o this, ‘he subsystems (which we know how to desoribe)
must be combined, Therefore, the ability to conveniently combine systems is very
important in the use of the functional representation for system analysis.

It can be said that not only is the ability to combine nonlinear systeins an important
engineering problem but also that this ability is a basic nead in the use of the functional
representation. The algebra of systems will be developed and the relation to the system
impulse responses and transforms shown.

2,2 FUNCTIONAL OPERATIONS

We introduced the operational notation in Section I. For a general system that oper-
ates on an input x(t) to producs an output f(t) (see Fig. 1), f(t) » H[x(t)] or { = H[x], where
t is implicit, The syetem operation (Eq. 3) is denoted by ™ ﬂn[x] + Then, the funu-
tional serics (Eq. 1) becomes £« H,[x]+ Hy[x] +... + Hy(x]+ ... . If this forn s
truncated at some ﬂn[x]. it is then a functional polynomial.

Now, if f_ = H_ [x], then

10




o * Hylex] = €"H, [x] = €™t (19)

where € is a constant, If £(t) is the output of system H with input xit), and te(t) is the
output with input €x(t), it follows that

te = €l [x] + €2Hylx] + ... + €"H [x] + ... (20)
The usual Taylor, or power, series 4
‘1“‘2‘2*"'“‘n‘n*“' (21)

and comparison of IXqs. 20 and 21 shows that the functional series is very similar tv a
power series. It will be shown in section 6, 6 that there is a sirong mathematical con-
nection between them. This relationship serves to relate the functional series to ordi-
nary mathematical series,

We have representsd the generalized sscond-order cpevation

¢z(t) -jf hy(t), 7,) x(t-'rl') yit=7p) dr,dr, (22)

by
in" Hz(x)') (23)

When x = y we have, g, = H,(xx) = H,._(xz). and since this represents a real input into
the wystem ﬂz,

P ﬂz(“z) . Hz[x] (24)

Terms of the form of Fiq. 24 do not ocour alone, but [» combination with other ter:as. If
t = Hy[x+y], then from the defin' ‘on of H,,

f(t) -ffhz(‘rl, -rz){x(t-'rl)+y(t-1‘z)}{x(t-rz)+y(t-rz)} dr,dr,

-ffh(fl, -rz){x(t--rl)x(t-‘rz)+x(t--rl)y(t-'rz)«i-y(t-fl)x(t-rz)i-;y(t--rl)y(t-vz)} dr dr,
(25)
But, since h(Tl, -rz) is symmetrical,

£(t) -ffh(fl, fz){x(t-vl)x(t--rz)+2x(t--rl)y(t-vz)+y(t-'rl)y(t-rz)} dr,dr,
-J/‘fh('rl, fz)x(t-'rl)x(t-‘rz) dr dv, + foh(rl, 'rz)x(t»'rl)y(!-fz) dr,dv,

+ffh(fl,'r:;y(t-rl).v(t-fz) dr,dr, (26)

11




1 toma of the definitiona <. Iiqa. 22 and 23, KEq, 26 can be written
Y 7.2 2 .
f=13,(x°)+ Zﬂz(xy) + le(y ) (27)

This expansion of Hz[xi-y] can be obtained directly in the short notation, by the following
sequenc e of steps:

ta= ﬂz[x"'}']
: Hz((xtv)z)
= B, (xP+2xy+y?)

= H,(x%) + 2H,(xy) + H,ly)
= Hylx] + 2hy(xy) + Hyly]

and this is validated by Eq. 27, Thereby, the form l;lz(xy‘. ceours in combination with
other similar forms,

Simuarly, for the third-ordor cuo, fy = 53[x+y] =H ((x+y) )= 53(:( +3x y+3xy ),
orf, s H‘(x )+ 3K (x y) + Sﬂs(xy )+ Bs(ys) This dlrectly goneralizes for the nth.
order case, Not only in this a useful interpretation of the functional operation, but it
will also be shown, in the course of this report, to be extremely useful for dealing with
{upus ' 2¢ avn componed of sums of simple functions such as sinusoids, Alan, this is
of great im..rimnce in the algebroir svnansion used for determining the aystem impulse
responses and transformas,

We have now accomplished two aims:

{a) The notion of functional power serias hne heen introduced,

(b) The concopt of non!" :ear ops rations has beon defined as generalized aultiplics-
tion operations on multiple signals, For example, H (xyr.) is an operation on a triplet
of functions x(t), y(t), and =(t).

2,3 SYSTEM COMBINATIONS

There are three basic means of combining nonlinear systems — addition, multiplica-
tion, and cascading, The addition combination of two systems involves putting the sam»
input into the two systems and combining the two outputs in an adder, Thia is shown in
Fig, 8a and is written algebraically: L =J + K, where L is the combined system, and
J and K are the component systemus,

The multiplication combination is similar, eixcept that a multiplier is ~ubetituted
{or the adder, The dingram is shown in Fig, 8b and the combinutlon is written
LeJ 'K (28)

12




ADDITION: 1 Je K

_:_[g S e NN

MULYIPLIGATIONT L Jo K

v [11]

{THTRS -
CANUADE! s K
in

Fig. 8. System combinations,

a1y \
>
N
| |
{9 (halt)eh
X n ]
{} Hutgey)

Fig, 9. Illustrating the use of brackets,

In the cascade combination the output of one system is the input of the other, This
is shown in Fig. 8c and is written L, = J * K, Expressing it in words, we can use "plus"
for +, "times" for :, and "cascade" for *, Then, for example, J + K .s read, "jay plus
kay."

1t is convenient to have a bracketing operation, in addition to th» vther cperations.
This is used to remove ambiguity from the algebraic expressions, ['or #:: mple, the
system (J*K) + L is the unscade nysiem T * K plus the system L. This iy shown in
Fig. 9a. However, the system J % (K+L) is the system J cascaded with the aystem
(K+L). This combination is shown In Fig. 9b. The bracket, then, has the same grouping

menning that it usually bas in algebra, and all terms in ps- .nii:eses specif. a comporite
sysutemn,

1?




For the system operation . = L[x], where L = J + K, we can write

I= (1+K)(x] (29)
Similarly, if L. = J * K, we can write

t= *K)(x] (30)
Equation 30, however, has another form. Let

y = K[x] (31)
Then, by the definition of the cascade nperation (sme Fig, 8c),

t =y} (32)
Substitution of Eq. 32 in Eq, 31 yields

t = J[K[x]] (33)

ag an alternative torm fur Xq. 30,

Now that we have the basic definitions of this algebra, we zhall proceed to develop it,
In view of the addition definition, the functional representation 1 seen to be an expansion
of a system H, andoo H«H) +H, + ... +H +....

Now, this algehra will have two uses:

{a) To expand a system in terma of its component linear and nonlinear no-memory
subsystems,

(b) To allow block-diagram manipulation,
In order tu ..t i{L. i thes. manipulations, or rearrangements, certain algebraic rules
must be deveioped, For the addition snd muitiplication operations the rules are similar
to those usually followed in algebra, The rules for the cascade operation are somewhat
different, These rules will be given in the form of eight axioms. The proofs are based
on the physical significance of the algebraic operativas,

The first two axioms are councerned with the addition operation,

Axiom 1, J+K=K+] (34)

This combination is illustrated in Fig. 8a. Axiom 1 states that both J + K and K + J
stand for the additive combinatica of Fig. 8a.

Axiom 2. ]+ (§+L) = (I+§) + L (38)

This axiom is illustrated by Fig, 10a, The diagram shows that i* does not matter
whether K and L or J and K are grouped togethar,

The next two axioms are like axioms | and 2, except that they have plus replaced hy
times,

Axfom 3, J. K=K (36)

Axiom 4, J ¢ (K'L)=(JK)' L (37)

The diagrain for the axlom 3 combination is Fig. &b, Axlom 5 states that both ) + K
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and ¥ - J stand for this combination Figure 10b iy the diegram for axiom 4. [t dcog
net inatter whetner K and [, or J and K are grouped together,
Tha Iast axiom of this group concerns the cascade operation

Axiom 5, J ¥ (K*L) = (J*K) % L, (38)

Thig uxiom is i{llustrated by Fig, 10c, where it is shown that the ( ) operation has no
physical significance. It is simply ¢ ‘natter of algebraic vonvenience.
Then, there are three axioms dea.ing with combined operations,

Axiom 6, L - (J4K) = (L+d) + (LK) (39)
The Jdiagram for this axiory is Fig, 1la., Axiom é is true because
f = x(y+z) » xy + y2 {40)
where X, y, and = are the outputa of L, J, and X, respectively,
A similar axiom holde for the plus and cascade combinatiorn,
Axiom 7, (J4K) * L = (T*L) + (§*L) (41)

This is shown In Fig, llb; the two systems {llustrated there are equiva.
lent

Anlom 7. (T.K) % L ow (JRL) « (K*L) (42)

The two equivalent systemas for this axiom are gshown in Fig. lla.

1t is also important to know which rearrangesments are not legitimate, In particular,
we note that, in general,

- A

LN ] Buy
ECHT}>_
1 tr — [}
[{mj}u - {rj-:;
LRV 2 (pmy)etymKl
] ] k
) 0 ' ! 1
[} {2Hx
gutgepl (W@l s (LwK)

Fig, 12, Illustration of combin: !ons,
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J*¥KeaK*J
L * (14K) ¢ (LA) + (L¥K)
L * (1K) # (L) * (L¥K) (43)

Block diagrams for various expressions are given in Flg, 12, and these relation. will
he demonstrated by means of simple cuunterexamples. Let J[x] » ax?, K(x] = bx®, and
Lx] = on?, where 8, b, and o are conatants. Then (J%K)[x] = a(bx?)? « x4, and
(K*)[x] = blax?)? = aZbx*®, with the rosult that (I*K)[x] # (K*J)[x], and thus Eq, 43 is
established in this special cass, We also have

(LHIHE))[x] = clax?ebn?)? = o(asb)? x4 (44)
and
((LADHLAK(x] = alax™)? + o(bx®)? = c(aB4b?) x4 (48)

Since Eqe. 44 and 43 are not equal, Eq, 43 has been justificd, Now

(LI E))x] = olax?bx?)? = onlply®
and

(L3} (L)) (x] = a(ax®)? « o(bx?)? « oPalbix®

and so Eq. 43 is valid,
Thetu &, © hrwavap, two imporiant special cases:

PO TILE- TR A (46)
and

L,» {J+K) = (x_.,*g_) + (E.'.l"'K.) (47)
Equation 46 is known from the theory of linear systems (%), To prove Eq, 47, let

Ixjmy (48)
and

Kx] =« (49)

then (L *(J+K))(x] = L [y+z], But L, is a linear system, and by supernosition, L,[y+z] =
El[y] +L [2]. Substituting Eqs. 48 and 49 in this expression gives

o by [I(x MK x]] = Ly [x]) + L, K [x]]

Ly ¥ (J+K) = (L %) + (L *K)

and EFq. 47 i8 proved,
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2,4 ORDER OF SYSTEMS

As we have mentioned, the funstiona, vepresentation expands n system H in a series

ﬂ'“x*'—’z*"'*ﬂn+"' (50)

In section 1.8 Hl was defined as a linear syatem, LIZ 88 & quadratic aystem, and so on.
H, s called an nth-ordor system, and gn[tx] = ("Hn[x]. where x is the input signal,
and ¢ is a constant, Equation 50 shuws that this order differentiates between the termuy
in the functional reprosentation; that iy, the first term is linear (first-order), the ssc.
ond ls quadratic (second -order), and 8o on, It is possible for a system to have a dc bias
&t the output which is unaffected by tue input, This biss can be taken as the result of o

zerg-order system Ho with the property that
L~_l-§o4-§l oo tH +L,

where Ho is specified by a constant ho' Huwever, since Ho does not have any Input-
output relation, we shall usually not include it in the functionsl series,

So that a combined system can be expanded in the functional series (Eq, 80), the
sffect of combinations on order must be noted. The system L, with

La,+5, o)

containg both nth. and m'h-ordcr Parts, as Eq, 31 shows, The system X, with

K~a,'® (s2)

b

is a system of order m + n, This order follows bocauss
Blex) = & [ex] - B, lex] « €™*Pg[y)
The cascade system H, with

Hep *B {53)

is a system of order mn. Thia is shown by
Hlex) = A8 lex]] + (™) A, [B [x]] = €™ H[x]

in which we have used the &iternative amgcade definition (Eq. 33),

Now that the effect of system comblnation upon ordering has been expiained, it is
possible to expand a combined 8) item in the functional series or the functional pc'yno -
mial, Before giving an example of a combined system, several Speciul systems will be
considered,
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2,5 SPECIAL SYSTEMS

We shall now introduce the rotation for some special systems., The r.unlinear no-
memory aystem will usually be denoted by N, so that ¢ = N[x]. In polynomial or power-
acrien form.

NeN #+Np#-en ¢ Nt (54)
and then
!‘unlx+nzxz+...+nmxm+... (85)

A particular linear no-memory uystem is the identity system I, which haw the defini-
tion x = J[x],
The zero system 0 is defined an
0 = 9[x] (56)
In algebraic equations, 0 will be used to dencte the system 0,
Thesge rather obvious properties should be noted:
H+0=H
and
I*HuH*1eH

In this algebra it *+ .llen convenient to replanc the nonlinear no-memory operations
by multiplication operations, To do this, consld:r the term No* H. By virtue of the
definition of N given by Eqa. 54 and 55,

Nm["] " nmxm (57,\

Now, if x = H[y], then N (x]= N [Hly]]« (N *H)y], and from Eq. 87, N [x] =
nm(B[y])m. By definition of the multiplication operation (Eq. 28) of this algebra, this
progsedure gives
Nm*ﬂlﬂm&_'_f__‘_'u.'g (53)
m timea
Then, if we define

H-He... .Hapy™
Lo s sty o o sommmsw!
m times
we liave
N *Harn 4™ (9)

where n . is just < gain constant, The no-memars < orim bm has been repinced by «
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multiplication operation ther. by, and a sum of no-memory systems H—m can be replaced
by a sum of multiplization operations.

2.6 EXAMPLE 1.

The combined system will now be illustrated by an example, Let us consider the
system of Fig, 13 in which L = él L I_Bl. Tais system can be viewed as an ampli-

LeA NN nA,

Fig, 13, Illustrative cascade system.

fier with nonlinear distortion, Al and Bl are linear systems ancd N is a nonlinear no.

memory system., Let N have a linear and a cubic part, so that N = §1 + ._N_3. Then
L= Al * (Hﬁﬂg) " §1
and by using axiom 7 (Eq, 41), we obtain
LaA,* (51*§1+§3*.B_1>
By use of Ly, 4+, wo Lave
L=A "Ny *B +A *N, B
When N, and N, are replaced by multiplication operations, we have
L=y *(m B+ A+ (‘-353)
or
L =nA; * By +ni; * B

since A, is linear, Now L « L;; + L,, where L, =nA, * By, and Ly = nyA| * g?.

This example illustrates how this algebra can be used to daperibe a system in terms
of its component subsystems, Next, we want to relate the algebraic representation to
the system impulse responses or transforms. Once this is done, we can proceed to find
the system response to various excitations. But, first, two cther topics in this algebra
must be considered,

2.7 CASCADE OPERATIONS

Strictly speaking, the cascade operations involved {n ombiniig these linear subcys-
tems and no-mentory nonlinear subsystems will not invoi- @ cuscading norlinear systems
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with memory. lHowever, algebr iz simplification is often obtained by grouping a number
of subsystems to produce n compoesite subs,..tem that 18 nonlinear and has memory (see
sec. Z.8 for an illustration of this point), This section is concerned with nonlinear sys-
tems with memory, in cascade.

The casz-ude gystem An * Bm has been shown to ve of order mn, Now conaider the
system L, in which

L hy * (B0 .

To determine the? order of this system, we shall develop an expansion for A 2 * (§n¢gm).

Now
E[x‘ = ‘é“(§=‘+gm))[x] = Az[gn[""]"gm[x]]
Let
y = B, [x] (61a)
z = Qo [x] (61b)
and then

Lix] = Aply+s]

= A, it

= Az(yz) +2A,(yz) + A%
New, subiiitution of Eqs. 6l and 61b gives
Lix] » A,((B xD?) + 2,(B [x]- €[] + A, (S fxD?)
Then if we define
(A 0By Co Wlx] = A(Bylx]- Cpy[x]

with the use of the operation "o", the system L beco.nes

L =4, °(BR)+ 28, © (B,Cpp) + 4, 0 (C2) (62)
(Note that 4, © (82) =4, B,)

Now that Eq. 62 has been estabiished, we see that it cx. be quiciily obtained from
Eq. 60, aa followr.
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L= Ay * B*C)
28, © (B+C )
« 4,0 (B2+eB c +c?)
4,0 (82)+ 28, 0 (B, ¢,) + 4, (g5) (63)
The term A, © (an-cm) is an operator of order m + n because
(8,9(B,'Cpy NMex] = B ,(B [ex].C _ [ex])
= A (€™*p,lx) - Cplx])
= €™, (B [x]. G, [x)
v €™*Pa,0(B,C ))x] (64)

Therefore, Eq. 63 shows that A 2" (Bn+Cm) can be expanded into three operators of
order 2n, m + n, and 2m.
The case A! " (§n+gm) can be expanded in a similar manner:

Ay % (B,4C.) = Ay © (Brg)* = Ay 0(82) + 38, o (B2c,,)

21 3
+ 343 © (ByCp) + 850 (S3,)
whera A, © (_g:-gm) is of order 2n + m, ana

(839(BEc )ix] = Ag(B2k] Cplx])

This expansion of the cascade uperation can be generalized to any order., For
examnpls,

Ay * (BotC +e #P) = B, O (Bt #.0042))°

and has a typical term in ity expansion:

A 0 (ByCpyel)
——
s terms
which is of order n+ m + .., .
In this manner, a cascade ombination of systems can be split up into a sum of single
operations. Each of these simple operations has a single transforra of impulse response
azsociated with it, which will be glven later,
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2.8 I"EBDBACK SYSTEMS

Example | was for a feed-through system. Therefore, obtalning its functinnal expan-
sion was a straightforward procedure, We shall now develop the procedure for deter-
mining the functional expansion for a feedback syst:m. The single-loop feedback system
is shown i, Fig, 14a, in which A and B are nonlinear systems that have a known func -
tional expansion. Figure 14b is an equivalent system, in which the feedback system of
Fig. 14a has been split into the system A cascaded with a simpler feedback system.

Fig. 14, H Nonlinear feadback system. (b) Equivalent aystem.
©) System L. (d) Combinution of A and L.

Let B* A » H, and let the simpler feedback system be denoted explicitly by L, as
shown in Fig. l4c, Then the feedback system of Fig, 14a, which is axplicitly denoted
by K, is given by

K=A*L (68)

as shown in Fig. 14d. Since A is known, K can be obtained from Eq, 6% once L has
been determined. We shell determine L firat and then find K from Eq. 65, beoauss
this {2 easier than developing K dirently. (In many problems K can be found directly,
In this general case, such a procedure is difficult.)

For the feedback system L, output g is related to iny . - by
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g = x + Hg] \w6)

which relates g implicitly to », However, it i8 desired to have an explicit relation

g = L[x] (67)
and 8o, if we substitute Eq. 67 in E4, 66, we have

L{x] = x + HlL[x]]
Writing this as a system equation, we obtain

L=l+HYL (68)

where 1 is the identity system. Equation 68 is wii Linplicit equation for L., Now, we have
assumed that A = A, +A, + ., . +A +.., andB =B, + B, + .., +B, +... . Therefore
the expansion

B.ﬂl"‘ﬂz"ovuﬁ'ﬂn*qo. (6’)

ic known, since H = B * A,
Now, we desire to find L in the ssries
Leby+hpt.cetlyt.. (70)
Therefore, Eqs. 69 and 70 are substituted in the system equation (Eq. 68), and
Ly+Lpt Lyt ooomle (HpHtE ) % (LytLhptlyt, ) (71)
Nuw ti-- ?._“ ran he fornd in ter:aa of the g;ln by equating the nth ~order system on the

left-hand sida .. Eq. 71 to the atP.orde sywiem on the right-hand side. So that the
order can be recognized, Eq, 71 must be sxpanded ax follows:

Ly + Lot Lyt oo o Lt (HyuL B MLp L L4 )
* (52"(&?)*352"“-41‘-‘—‘2’*52"(53*' )
* (8yo{L ) o s0(Ld ) +98°(1y 1)
+HO(L3 )41 )+,

Equating equal ordera then yields:

Ly=I+H *L, (12)

Ly=H,*L,+H,° (L‘-f) (13)

Ly = ) * Ly + 28, © (L, -Ly) + Hy (L) (14)
and so on,
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By way of explunation, if y = A[x] and z = -y, then z = -A[x]. Now, if g = B[x], then
f=g+z=B[x]+ (-Alx]). Taking f = H[x] = B[x] + (-A[x]) gives a avstem equation

H=aB+(-A)or H=B-A

This define: the minus sign in this algebra. The minus, or subtraction, operation obeys
all the rules for the addition operation. Thua by subtracting Hy * L, from both tides of
Eq, 72, we have

I_-q - (ﬂl*hl) =1+ (L{]*hl) - (ﬂl*&l)

or
or
(I-H)) * L, =1 (78)

because | * Ly« L,. Equation 75 is, then, an alternative form of Eq, 72. Ina similar
manner, Eq. 73 becomes

2
(I-H,) * L, s« H, © (hl) (76)
and Eq, 74 becomes
3
(1H,) * Ly * 2H, © (L, L) + H; o(L3) (17)

Now, if we »a . cade Eq, 75 (formal justification will be given in Sec, VI) by the
inverse of (I-H,), which is denoted (I-H,)™", thon

(-5 » (=B ) w L, = (B (78)

But (l-ljl)'l is the inverse of (1-H,), and so0 (_I_-l;!l_)'l *(I~H,) = I, and Eq. 78 becomes
L, = (1-4,)! (79)

(It y = H[x], then there is a X for which x a K[y]. This K is the inversz of H wnd we shall
denote K by H™'. The inverse ia considered ir. more detail in sec, 6.3. The inverse
of a linear system is well defined in linear theory.)

Similarly, Eq. 76 becomes

o ()
and Eq. 77 becomes
Ly = (1-H,)" » (zgzo(lil-l_.z)+§3o(;:1;))

In thie manner, ‘he L, can be found for the feedback sy m L.
The functi: 4] series fo- the feedback systent K is th:a gliven by
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K=A*L

2 (8 +Ap 4. ) * L thpt )

=By Ly + A, 0 (L) 428, 0 (LyLy) + Ay 0 (L]) 4.

and thuva
B, =4, %L (80)
K, = A, ©(L}) (81)
Ky » 24, © (L k) + A4, 0(L3) (82)

and so on, The validity of the series expansion

KeK, +K, + 00+ K +.00 (83)

will be considered In Section VI, but it may be said now that it ia generally rapidly con-
vergent for sufficiently bounded input.

In any particulsr problem there are two alternatives. We could use the equations
for En for the general case of Fig, l4a (the first three equations are Eqe. 80, 81, and
82), and substitute the particular A and B that arc being used. A better procedure is

A - —_— -I'

Fig. 18, Nonlinear servo system,

to work out the En' by the method just desaribed, for each particular case, This is not
too difficult after some practice.
An an example of this meathod, consider the feedback system of Fig. 15. In this case

L« H) *N*(-L) (84)
where H; 15 a linear syatem, and N = I + N,.
This system is sufficiently simple thut the series for L can bo obtained directly,
Equation 84 can be rewritten as

L = H, * (-L) + n,H, * (1-L)?

and substitution of the series L = L, + L, + Ly + ... 1 t9is expressio ylelds
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. 3
!—:1 + l_-:z A I_-:3 to..o= H] * Q.‘l_‘:l"!.‘g'[_-j"-' )+ n_;!_[) * (.[."Ll'L_‘z‘.l:3" .
= (ﬂl*(l'hl)'ﬂl*bz‘ﬂl*lz3" o)
3 2,
+ (nSEI*“—_—L—‘l) +3n3§l"'((l-h) -L'Z> +o .) (85)
Therefore
:':l - 51 » (1‘51) (8e)
Lz - 'ﬂl * Ez (87)
3

53 . 'ﬂl * I.-.‘; + nlg] * (1-L) (88)

Rearcanging Eq. 86 (in a manner similar to the rearrangement that gave Eq. 79 from
Eq. 72) yields

L, = (#H,)" *H,

Equation 87 is satisfied for [, = U, and this is the only solution (vee mec. 6,3). Rear-
rangement of Eq, 88 gives

Ly = nylil))™ # By 2 (0oL = ngly # 0oLy

-

Continuing this procedura gives _I“, l—=5‘ and so on. In particular, it can be shown that
Ly=0

L, = 3n,L, *((l'hl)z‘h:g)

Lg=0
Ly # kg * (3L )+ (1L Py )

¢.9 IMPULSE RESPONSES AND TRANSFORMS

1t has been shown how the algebra of systems can be used to combine systems. But
before the output of a system so described can be vbtained for sorme given input, this
algebrs must be related to the system impulee respcanes and transforms. We shall
give the relation between the algebraic tarms and the corresponding Linpulse reaponses
and transforms,

By means of thia algebra, a system [ in expanded in a series L. = -I-'-'l tLypt.e
L“n + ....mwhcre the L‘n are glven in terms of the system's component subasystems.
For an n™"-order term of the form L = A +B or l_..n[x1 . _l}n[x] + B [x], the corre.
sponding functional squation is
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ff ln(‘rl....,f“‘ *c(t-rl) x(t-fn) dr) ... drn
2 f f an(rl,....'rn) x(t--rl) . x(t--rn) dry oo dry
+ f"'fbn('l""'Tn) x(t-'rl) x(t-Tn) dry oou dry

. f. , .f {nn(fl, eas fn)+b"(-rl. R -rn)} x(t-vl) . x(t--rn) dry e drp
Therefore
lnhl' Vee, Tn) - ‘n(Tlp Ve Tn) + bn(Tl‘ Y Tn)

Hence, for the algebrain term L’n' where L, = _A_n + B, the corresponding impulse
responae is

ln(tl, teuy tn) = .-n(tl. ten) tn) + bn('ll LR tn)
The corresponding tranaform relation is
Lﬂ('l‘ v |,.n) L Al’l(.l‘ 'y n.'n) + Bn(ll‘ ooa;ln)

Similarly, it can be shown that for the simple multiplication combination, with

Lotm ™ A.+B., the corresponding impulse response is

Lpamtp oo tpam) = 8yt by bty ) (89)
The corresponding transform is

Ln+m('l‘ Y] .n+m) " An(.l‘ XN .n) Bm('n+l. e g 'ﬂ+m) \"b)

For the cascade situation, with En LY.\ ™ gn. the impulse responae is

ln(tlp IENY] tn) - f.l<f) bn(tl"f,tz"'r. XK ptn-'f) d'f (91)
and the transform is

Lo(8y, oo mg) s Ay(syhayt,iote ) B (5,00 0,0,) (92,

The more general cascade operation also has a relation with a corresponding impulse
regponse and tranaform. If

L

Lprge,. 40 " 80 ° BpGy o Byl (93)

then
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v et taige, L ar /' fa (ryoevimg) Byt =Tpa et -m)

X oqlbpy1™Tgr e eitnuq=Tp) oo A7y oy dry (94)
and
I'pf-q+...+r('l' ERYL ) = A (l o..t8 'ap+l""'+'p+q' ve)
XBp(ul.....np) Cq(op“.....lmq) (95)

Some of these combined forins, aw wiitten, are uot aymmetrical, but they can be
symmetrized, if it is desired. As we have stated, the imulse response h,(';l, ty) can
be symmetrized by forming

haltyta) * Bpltyrty)
2

(96)
The transform Hz(ll, lz) can be symmetrized by forn.ing
H,(a,,8,)+ H,(s,,8,)
2\ 8, i 2'") (97)
Similarly, for Hy(s,,8,,8,), we can construct
%{’{3/-.. 8o, lq)"'Hs(ll, ., lz)ﬂia(lz. 8, ll)+H3(Ia. 5y ll)
+l{3(u3. 81, 8,)tH, (8,85, 'l)} (98)

In general, for Hn(l‘. ...,ln). we add up the Hn with all possible arrangements of
By, ores 8, and divide by the nu' *ber of .rrangements,

Two examples of obtalning the transforms from this algebra will be given. For the
feed -through system [, (see Sec. VI):

Lal)+Ly (99)
L, *nA, *B, (100)
L, "n,A, * B} (101)

Let Al have u tranaform, Al(l), and El have a transform, Bl(u). We want to find
L (l). the tranoform of L, and La('l"“Z‘“B)' the transform of L;,. Hv application
uf Eqs. 89-98, we huve L,(s) = n A (s) B (s). From Eq. 90, B| has » transform,
B ("l) B (lz), and Bl Bf B, hu 8 trnnlfm'm. Bl('l) Bl('z) Dl(l). Equation Y2 then
shows that

LB(Il, PR “3“1"\*'2*'3) Bl('x) Bx("z) 81(13:
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The secund system 13 an “xo=ple ot a feedback systein (sec sec. 2.8), with

Ly = H)7 *H, (102)
Ly = oyl * (L) (103)
Ly = Iyl * ((1-Ly)P L) (104)

Let H, have a transform, H,(s) = Alst+a), where A » a, Then (L+H,) has = transiorm

A _hatA
l4'l+¢.l*|'¢

and, from linear theory, we know that (I_+g[_1)" has a transform

1

~|+¢
1+H ) *7A

Then, from Eq. 92, L, has a transform

Lo ith she e s 0s)

Since (l-Ly) has a transform I = L, (s} % s/(s+A), (I_-Ll)z han a transform

[} ]
TR oA
from kg, 20 wad \L—LQ’ hae a transfsca

5, 5, 8y
||+A lz+A l3+A

Therefore, application of ..q, 92 tv Eq. 103 shows that I—=3 has a transform

n,A ¥ [} .
3 1 & 3 (106)

I“S('l"?."a)-n +|2+03+A ll+A l.‘+Al3"'A
o

t
Also, since (L—Ll)z ' Ly has & transform
(] s
—_—
s+ A a, + A Lty sesy)
Ly (Eq, 104) has a transform

3n3A 8 g, )
LS('I"""5)~ T Py Sy T4 La(sy s 8,) (107)

With some expericnce the transforms can be readilv obtained by inspecticn from the
nlgebraic equnilons. We are still not in a position to v- s t.ese trausforins to compute
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the system output for a given il.put. However, at the end of Section IIl, these trans-
forms wiil be used icr this purpose.

2.10 SUMMARY

We have oeen concerned with expressing nonlinear systems in terme of their linear
subgsystems and nonlinear no-memory subsystems. The main tool for combining svs -
tems has been an algehra of systems. The algebraic wmaunipulations reqaired for system
combination obey laws similar to thoge of other algebras, If the algebra of systems
were not used, syatem combination would have to prrreed with involved formulas and by
a series of clumsy steps. Our algebraic notation consists of a system representation in
which only those aspects of the functional represcntation that are involved in system
combination are emphasized, This algebra applies the powerful concepts of operator
mathematics to nonlinear systems,

The relation between the algebraic representation and the system impulse responses
and transforms has been shown, Particular empnasis has heen placed on the transforms
in the two examples presented,
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i1, SYSTL™ TRANSFORMS

3,1 INTRODUCTION

We tave represented a nonlinzar system in terma of its impulse responses
hn(tl' veos tn), or the transforms H_.(al, s an). 1he syatom ouvtput, f(t), is ,.ven by
Eqgs. 2 and 3, The problem, now, is to obtain the fn(t). and thereby the system output,
£(t).

In Section I multidimensional transforms were introduced, and we found that the
value of these transforms -~ just ag in the linear case — lies in their making it poasible

SN iy S iy O vy BT 1 gy I

Fig, 16, lllustrative feed-through system,

to substitute multiplications for convolutions, Not only is this true in calculating the
system output, but also in cascading systems, This is shown by Eqs. 9! and 92, and
by Eqs. 94 and 95,

Another reason for using transforms is that the form of the impulse responses, even
for c.my '~ gvatems, is rather complicated. For example, consider the system of Fig. 16,
In this cuse.

and A, has a transform A/ls+a), B, has a transfiem B/(a+B), and n, = 1, Thrrefore,

from Fqs. 90 and 92, Ly, has a transform
A%

(il+lz+p)(ﬂl+“)(.z"‘)

Lz(ll, lz) . (108}

Heference to Eqs. 89 and 91 shows that the impulee response ls

t, ort ~a(t=1) -a(t,~r)
1,(t,,t,) = 1 2 BePT A% e 2 T
AN L3 0
for t,, t, » 0. since A/(s+a) has an inverse, A exp(-at), and B/(s+p) has an inverse,
B exp(=pt). The form of the limit follows because él and El are reulizable systens,
and 7 is integrated from 0 tot, or t,, whichever is smaller. Working out the integral
gives

2\ [ =at, ~-at ~(B-a)t, -at,)
.{BA%) 1 2 ) 2
12("1"'2) (p_za/{e e - e []

for tl' t, »{ and tl < tz, and
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2 -at, -at -at, ~(p-alt
‘z“:-'-z)=(1?:“z‘;>{e te 2o le 2} (169)

frrty, t; 20 and ty < t). Comparing this result with Eq, 108 shows the simplicity of the
iransform, as compared with the impulse response.

Our obji-ct, now, is to show how the transforms can be used to determine the output
of a system, Emphasis will be placed on an important special case for which the (rans-
forms are factorizable, This situption arises when a noalinear system is lumped.

We ghall be in a position to apply the funciional representation to the solution of
uonlinear system problemas, and several examples will be given,

3.2 MULTIDIMENSIONAL TRANSFORMS

Higher -order trangf~rms were defined by Eqsa. 10 and 11, and a method of using the
trarsforma was indicated. The linear case is well known. If

()« [ 1y atter) o (110)

then
Fy(s) » Hl(l) X(s) (1)

Conmider .- . y:iod-tn iystem

fp(t) = ff hy(ry, 7p) X(t=7,) x(t-7,) d7,dT, (112)
To use transform theory here, we must artificlally iut. cduce a t) and a t,, so that

t(z)t) ;) -ff hplry 7p) xlt)=7) x(ty=7,) d,dr,
and then

F‘(z)(ll,lz) 'Hz(l‘,lz) X(ll)X(lz) (113)
Formally, at least, F(a)(ll.lz) could be inverted to give f(z)(‘l' t,), and when tz(t) is
the demired output, f,(t) = f(z)(t, t), This is illustrated in Fig, 17. We have f,(t, t,),
which could be plotted by contours on the the ty plane, but we are only interested in

fz(tl,tz) along the 45° line where ty sty =t. This method generalizes tu nigher-order
cased, For example,

(o)t tarts) "fff hy(rys T m3) Kl =m)) wlty=ry) x( or ) drydrydry
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but th- quantity of interest s f,(i), with
£5(t) = {13t 4, t) (114)

The procedure of taking a numb.: of variables TURERY tn as equa! will be called
"nssociating” the variables, The procedure that has been outline. is not particularly

' /

Wty et Fig. 17. “1"2) plane showing t, = t; lne,

practical, sinne it involves taking an n-dimenaional inverse transforii. A better pro-
cedure is to associate the time variables in the transform or frequency domain. That is,
given F z)("x' 8,) as the tranaform of t(z)(tl,ta). then F,(s), the transform of f, (1), will
be found directly from Fz('l' 8,). The formal relation iv

+
Fz(n) » é‘lﬁ ./;-::n F(a)(l-u. u) du (115)

where o is a suitably chosen real number. A proof is given in Appendix A. 2, This
relation {s similar to the Reul Multiplication Theorem of lnear theory (9). For higher-
order transforma, Eq. 115 cun be applied successively to associate the variables, two
at & time, ‘lner ‘¢ example, for T"‘(_,-z(u 1282 83)

orje » o¥jeo
F3(l) .(Elﬁ)z j;-j: .l:-j: F(z)(f‘ux' Uyl “z) du,du, (116)

This is still not very proatical buoause convolutions must be made in‘the transform
domain, The great value of making the associations in the transform domain lies in the
fact that these awsociations can be made by ‘napsction in a large clusa of problems. This
class is the nonlinear generalization of the liumar witustion in which tiie transforms are
factorizable. The constraint cn the system is that it be luinped - that is, that all the
transforms of the linear subsystems be factorizable.

Then for the system H, where H » Hi+Hy bt Hn + ..., We have

P
H,(s) » ig} ;—;-%‘»,ig Rt (1)

where Pl‘ Py and R,t are complax conatants. This is familiar from linear theory, and note
that terms of the forin P‘/(u-p‘)“. for a > 1, have baen left oitt, Such terms wiil be con-
sidered scparately, If X(s) {s the transform of the input to H, then the transform of the
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output frem the linear portion H, is given by F,(s) = H,(s) X(s). If ¥(s) is factorizable,
thea it is known frorn linear theory *hat Fi(a) uas the same form as Eq. 117, if multiple -
order poles are neglected. In the class of syst~ms that ia being studizd (linear suhsya-
tem# with memory and nonlinear no-memory subsystems) the most gereral second-order
term is a summation of terms of the form

A, *(B2)) (118)

The determination of the transform of such a term was considered in Sention I, !t .»
where Al(n). B, (s), Cl(l) are the transtorms of the aystems A, B,, and C,, respec-

tively, If the input has a transform 3(s), then the contribution to the system output that
is attributable to the output from the term of Eq, 118 has a sccond -order tranefovin

AI(.I"Z) Bl(.l> Cl('z) x('l) X(-Z) (119>

1t 3,(s), Cl(l), and X(s) are of tne same form as Eq, 117, then Bl‘ll) x(cl) and
Cl(lz) x(.z) have this form, and Eq, 119 becomes

B C
Al(ll+lz) % W;LF‘- '.—z—‘,‘—vz' (120)

where B;, C,, p;, and y; are complex constants. The transform A l(») does not have to
be factorizable, but it will generally be assumed to be 80, Note that the termu Rll‘

i=0
have beer excluded fea- .4 summation of Eq. 120, This is done because these terins

are the transforms of impulaes, doublets, ani so forth, and such functions do noi exist
when squared. Should these idealizations ocour in a physical problen, they must be
removed and replaced by the real physical signals,

The inspection technique can now be developed, Cu vider a typical term in the
second -order case (Eq. 129):

B (o]
Op)(m8g) = Ayl 40)) 5 5, v
Application of the transform -domain association equation (Eq. 115) gives
Gz(l) a ilﬁfq(z)(l-u.u) du (121)

or

G,ls) = EITF{ fAl(l-\H-u) ;—:h ;'-% du

1 B
gy [
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The ‘erm that is to be considered is

} B C
Ei‘j'./’s-u+5u+y'du (122)
But (B/(s+B)(C/(s,+Y)) is easily inverted, and has an inverse transfor.
-3t =yt
Be lCe 2 tl,tzao
Setting t; = t, « t gives
B Ce-(pW)t t»0

This has a transform, BC/[s+(f+y)], and it is seen that

BC
8 + (Bty)

1 B __._C
iﬁ_/.n-urpui-yd“’ (123)

Finally, we have

Gz(') = Al(ﬂ '_-Ec_""

s + (Bty)

where Gz(l) is the transform of gz(t); and gz(t) = g(z)(t,t), where “(z)‘tl'tz) is the inverse
transform of G(z)(ll,lz). That is, we have made the assoclation of t; and t, by a
teansform demals - aulpulation that gives us the nrdinary linear transform of the desired
time function gz(t). Furthermore, this maninu'ation can be done by inspection,

That it is an inspectlion technique is seen by noting that the association of t and t,
changes

B c
Aa)lsy 82) = Ayloyiy 3B 55 (124)
into
Gyls) = A, (n) —BE__ (125)
8 + (Phy)

Examination of Eqe. 124 and 125 shows that the change is a very obvious one and can be
obtained by inspection.

Higher -order transforms can be reduced bv applying the lnspuction procedure to
aapociate the variables. two at a time, For examnple, consider the third-order term

A B C - C C (l-\
sl+|z+|3+¢|3+|3+Bul+Y Byt Y Ha by

Application of the formal assnciation equation (Eq. 115) to associalc 9, and 5, yielda
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T A A B C c c

iﬁju’-}«: B Y6, -utu+as,-0 utp e ¥y sz-u+7u+'{d“

A B _c 1 [ ¢ c
. —— 27
-’1+“2+"’z+p'1+vz”j-]r-jw lz'u*\{u*'Ydu (127)

This integration is of the same type as that in Eq. 122, and it yiclds C/(nzh'!v\ (see
Eq. 123), Therefore Eq. 127 becomes

A B C C
|l+uz+=oz+3|l+v|zﬂ=y

(128)

{For convenience, the procedure of associating two time variables t1 and t, in the fre-
quency domain will be called "agaoclating! the frequency variables 8 and s ) The
change from Eq. 126 tuv Eq, 128 is obtained by applying the inspection technique to the
variables s, and By Now, Fq, 126 equals

A ¢ _.ac’ I
TR |l+y'z%g:§{#ﬁ '2+2V} (129)

and the asscciation procedurs can be applied to associate s, and s 2 The result is

2
BC A 1 1 (

2. - 130)
Za-pdta {l"‘(ﬂﬂ) l+3y}

Simi'ar'v, a transform of any order can be reduced to a first-order transform by
successive use o the Ludpection technique. Fou example, consider the fourth-ovder
term

A B B < __C
Ky(sty4nyts,) B TR, e FBa, PP, VA, Ty (131)
where Kl(l) is some transform function. Associating 5, and L by inapection yislds
2
A B B __GC
Ky (s 4aytn,) B Fa, o u vEa, v PR,V

Next, associate 3 and 5, The result is

2
A B c
Kx('z*'s’iz Ut r

2
AB W c
'Kx"z""s”‘a_z -n(az+n -z+2p> iyt 2y

Finally, s, and s 3 can be associated, and we obtain

A 1 1 ,
Ky 5 (miz-y"i?zp—;za') (132)
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Notice that 8, and 8, were aesociated first, then 8, and By, and finally 8, and 8, If we
had nesociated Hy and By 9y and 5,, und 8, and 8,, we would have had to handle « form
that had not been discus3ed. At times. when we ave using the inspection technique, it
will bhe necessary to associate the variables in a definite ovder to avoid forms that we
cannot handle with the muthod discussed here. In a similar manner, fifth-, sixth-,
and higher -order transforms can be reduced to {118t -order transforms.

The method for using multidimensional transforms can be summarized aa follows:

(a) Introduce artificial variables BTRITIRERY tn' a0 that multidimonaional trane -
forme can be uned to apecify the nystem output.

(b) Associate these variables t;, ..., t, with the time variable t hy means of the
inspection procedure in the transform domain. The result of this procedure is the trans-
form of the aystem output.

(¢) Then, if it im desired, thias first-order transform can be inveried by the ovdinary
linear aystemn analysis methods to give fl(t), fz(t), and so on, whare the output is

f(t) # £,(t) + (1) 4,0 + fn(t) s

Otherwise, the output signal can be intorpreted in the frequency domain, as is oftewn done
in linear system analysis,

Nontactorizable higher -order transforms — for example, aituations in which delay is
involved -. can cften be handled by solving the rssociation formula (Eq. 118) in the man-
ner glven by Equ, 121-125, that is, by working partly in the time domain and partly in
the frequency domain.

As an example, consider the transform

™

(s 40 (a40)™

(133)

where " and 8, are o be associated. This {s the multiple -pole situation whi~h we have
ignored previously (Eq. 120), Equation 133 is easily inverted and has the transform
A 1, B ma P
(n=1)1 (m-1)!
Associsting t, andt, yields
A B_ ,ntm-2 e-(aﬂi)t
{n=1)! (m=1)t

and this has a transform

(n+m=2)) 1

B
(n=1)1 (m=1)1 (s+arg)?*m-!

(134)

which is the result of assoclating 8, and &, in Eq. 133,
Before giving some examples of the application of the material already prosented,
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we shall ruund out the discussicn of sysier; transforms by considering some other prop -
erties of theae higher-order transforins.

3.3 STEADY-STATE HESPONSE

In linear sysiem theory with f, = H,[x], and x(t) = Re {Xej""}. where X is a complex
conetant, it is well known that in the steady state, the output fl(t) is given by

f,(t) » Re {XHl(ju)ej“’t}

where Hl(jw) is the system transform Hl(l) evaluated at s = juw,

A similar result iz found for the nigher-order system transforms H“(l prese ln).
To develop the steady -state output of a second-order syster with a sinusoidnl input, con-
sider the second -order operation on an input pairt

g, = Hy(xy) (138)
The complex functions are

Jw,t
x(t) = Xe !
and

Wat
ylt) = Yoi 2
where X and Y are complex constants, The steady-state value of gz(t) is given by

‘ Ju b Ju,t
L

‘2(” = erz(iﬂl. juz) e (136)

where H,(Jw), ju,) is Hy(s;, 8,) evalusted at & = ju, and 8, = jw,, We see thut the trans -
form Hz('l' lz) has = ateady -state interpretation ver, sliilar to the linear transiorm
Hl(l). The operation of Eq, 1 J does nut exist alone, in order to examine the real
situation, oonsider the actual second-order system, with £, « ﬂz[x]. Let x » y + 2, with

yit) = -’25 elot
wnd
s(t) = %‘-e'j“’t
Here, X is the conjugate of the nomplex number X, Then
x(t) = Re {xel*%}
The problem now is to find the steady-atate value of fz(t). We have
t, = Hy(ly+2)?) « B, 0% + 28, (ye) + H,(e?)

and, by use of En. 136,
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f(t) = 5 he {szz(ju. juo) SR TA, (Jo, -Ju)}

Hence, ihe steady -state response of a quadratic system is composed of a de term and
a double frequency term, This is similar to the effect of a no-memc.y squaring opera -
tion,

In .. aimilar manner, the stendy-state response of higher-order systems can be
formed, For the third-order case,

f(t) » -i—Ru {XSHa(jw, Jw, jw) ej‘“‘t+3xzxﬂ3(ju, Jw, =jw) ejm} (137)

It should be noted that the solution of theae equations depends upon "n('l' vers ln) being
symmatric, If the operation of taking the veal part im omitted, then the quantities
X3H3(jw, jw, jw), and so on, oan be regarded as somplex amplitudes of the corresponding
sinusoids, just as in linear system analysia,

Not only do these results furnish an interpretation of the higher-order transforms;
they also show thut che steady -state responve of a system can be easily nbtained, once
the system transforms are known. To give an example, conuider the nonlinear ampli-
fier of Fig. 13, We shall use the system transforms for L, (s) and L,(s),»,, 8,) devel-
oped in section 2,9,

Let

A(n) -(——%’-—T

o+a)” + wo

and

( n lABI:'
A (VI RS

n,A Bs Bn Bs
Liy(s),mpmy) e e i— 3
[(-1+n.‘+|3+¢) +u°] [('1*’9’ +u0} [(azu) +m°] f(13+p) +wo]

and

if we apply the methods that have been given for obtaining the steady-state sinusoidal
response (in particular, Eq. 137), at frequency w, we have the following complex
quantities:

(s) Linear gain,

L, (jw) » p— nyABK ()" (138)
! ijp)zmﬂI(jun)zmg]
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(b) First-harmonic distort:sn, which 18 the amplitude of the first-harmonic tetw
that varies BB x3,

223 L, (o, jo, =ju)

AB3%? | | 2 ju) .
[Gora)Zrad]  [Guep)®s & F{guem)®el |

il
30

(139)
(c) Third-harmonic distortion, which is the amplitude of the signal at three times
the input {requency,

o 4 Ly, ju, o)

JEETET,
Y nyABX () (140)

‘ [(13M¢)2+wg] [(1¢.:+p)2+:.::]3

where X is the amplitude of the input sinusoid,

3.4 INITIAL-VALUE AND FINAL-VALUE THEOREMS

Another useful property of the higher-ordsr transforms is that they obey initial-
value and final-value theorems that are similar to the linear transforms, If f n (tl.. vty
hos & transiorm 'r',: 1;1-". iy ln), and if fn(t) . f(n)(t,t, +o1,t), then the following rela-
tiuns wre truet

:Lna tn(t) . .11121” F(n)""l"' .,ln) LTS (141)
. e

and

(142)

Um fn(t) - '11210 F(n)(ll, RN ln) TR

t=o0

ln-O

Proofs of Eqs. 141 and 142 are given in Appendix A,3. The usual Lnear theory con-
straints hold: all limits, in both the time and frequency domains, must exist,

These results can be used, just as in linear system analysis, to obtain the initial
and final values of system output values, slopes, and so forth, rapidly

3,5 EXAMPLE 2,

This example i# concerned with the feedback servo iystem of Fig, 18, Hl is the
cuschde combiaation of an armature-controlled de n...ot and a gain iacior, and
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Hlfs) = A/(s+a), The output [ is the motor velocity, and N is a compensation device,
(see Fig. 18,) The objecti're of thia design is to reduce the step response time of wne

system,
First, consider the linear uncompensated system with N = I. The step response of

this system is

Fit) = X(1-0~A) t>0

where X in the amplitude of the input step, and A » a, The rise time of the aysiem can
be reduced by inci-easing the galu factor A, but there {s an acceleration constraint that
limiis the size of A, This limit on A s
nH.Eu: n o datermined by xm. the maximum input
amplitude with which the system is to be
used, and by M, the maximum alluwvable
- acceleration, In fact, the maximum gain

T S
' sy for this linear system A, is given by
e .* Al L] M/xm.

In this prunlem, we shall show that a
Fig. 18, Example 2, Characterization simple nonlinear no-memory compensating
of N. device, Ns 1+ HJ' can be used to decreage
the response time and still meet the accel-
sration constraint, Only the first two terms of the output are signifiount in this problem,
and hence f(t) = 1,(t) + r,(t). The nonlinear system in this problem is the same as that
of Fig, 15, and the first two system transformas have been given in Eqs. 105 and 106,
If the inpnt 2ft) '« u teansform X/B, then the vutput transforms aro

F(s) « A% (143)
e s(s+A) \
and !
Fray(e,,8,,8,) = 0 (144) ‘
(371 Tar T (3, 48,48, #A) (8, +A) (1, +A)(8 4+A)
By using the inspection terhnique, we cbtain
o) X (145)
3% T AN s t3A)
and thus
n Xz n ‘xz
l(t)nx{ -1 -t o"‘-—?z—o"‘“} (146)

Also, we have
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z-
n, X
1) = Ax{(l - )e"“ +3n,x? »’3"'} (147)

where {'(t) represents the acceleration. It is possible to investigste various choices of
A and n, tn obtain a rapid response and still have f;n“ = M, A good choice is

Ny =~ —x (148)

1
4xm

in which case the gain can be taken as

4 M
A =3 (149)

n 3 xm
and the acceleration constraint is satisfied for the maximum input amplitude, Xne The

0 to 90 per cent rise time, tr' for maximum input signal is
X
a —m

t,= 1.8y (150)

and for the uncompensated linear case, it i
X
i+ - §
.= 2.3

'Therefore, the rise time can be decreased 20 per cent by the use of simple nonlinear
compenaation, For small signals, the rise tiine has been decreused 25 per cent.

Lot
e )
2477
0.8t /
0.8}
s
&
[- X
vt
°.° i L A
) ] )

Fig, 19, System response. (All outputs are normalized to 1.)
Large-signal input! o, compensated nonlinear system;
£, uncompensated lincar system., Small-signal input:
®, compenasted nonlinear system; A, uncompenr = od
linear system.

Figure 19 shows the transient responaes for maximur input s‘cps and very small
input steps for the linear uncompensated and the nonliner: cu.ipensated sy stems. In
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both curves, the output is rormalized t, |,

Figure 18 gives the input-output character-

istic of the nonlinear device, It is spacified only for an input less than Xm' Qutside
this repion, any saturation characteriatic suffices,

-

{e}

=~ {8}

.

Fig. 20. Exzample 3, (a) Lowpass am-
Utier with outpus distortion.
b) Amplitier A with feedback.

It is appropriate i~ cinphasize the
mportance of signal amplitude in the
analysis and synthesis of nonlinear sys-
teris, In the analysis of Linear systems,
the input-signal amplitude i rather inci-
dental, This is not the case with nonlin~
ear systems because the nature of the
oystem response is greatly dependent
upon {rput amplitude, Therefore in a
nonlinear system problem the range of
input amplitude {8 a very important
parameter, A knowledge of this range is
essential in using the functional repre-

sentation for systom analysis because
thiz will determine how many terms of the output must be retained.

The use of nonlinear compensation in servo systeme is a problem of coneiderable
interest. This particular exampl® has been given not only to illustrate the use of the
functional representation for nonlinear feedback systems, but also to indicate the pos-
sible use of the representation in the study of the general problem of continuous nonlinear
aoinper.. VR

3,6 EXAMPLE 3,

The systems of Fig. 20 are: A, an amplifier with output distortion, and B, the same
smplifier with some weak r ~dback f.r reducing distortion. In this situstion, the cloi-
sical steady -state methods do not suffice,

Let Hl have & tranaform, H/s + o, and N =] + ys + Ny, The teansformas of nystems
A and B can both be computed by the methods praviously explained and illustrated. If
the input in x(t) = Re {Xej“t}, The transformas can be uscd (o give the distortion ratios
for the systems. (Transforms and details are given in Appendix B.1.) For low fre.
quencies, theae ratios for systen: A are:

First.harmonic distortion = % n3Bzxz + % nsB‘x4 (151)
Third -harmonte distortion = +n,B?x% + § n,B4x* (i52)
Fifth -harmonic distortion = '11'6 n_,’B‘x" (183)

where X ig the input amplitude, and B = X /a is the -inear low-frequency gain. Ausume
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that %nsBzxz is approximatei, ;, and : n584x4 is approximately 'z'lﬁ , at the maximum
value of the input amplitude, X. Then thc aistortion ratios for feedback system B are
as given below. (See also Apprndix B,1,) G is the ratio
H'-H
H {154)
where the gain factor H has been increaned to H' tc keep the linear gain of fr..dback
system B equal to that of system A. These ratios arc:

First-harmonic distortion » %nsszx" +%n53‘x‘ - -135- n§B4x‘G (155)
Third -harmonic distortion ¥ £ n,Bx% + & ngB*x4 - 13 nZntxa (156)
Fifth-harmonic distortion ¥ 1§ ngB*x* - & n%B4x4q (157)

We see that feedback can be used to decrease the amount of distortion even with the lin-
ear gain kept the same. It is interesting to note that if Ng * 3n§G, then the distortion
trom the fifth-order nonlinearities will be completely removed by the feedback.

This example could be exteinded to higher distortion and stronger feedback by devel-
oping more of the terms in the expanaion of the feedback system.

3.7 EXAMPLE 4,

The syatem of T'2, <la is an exainple of an FM detector of the phase-locked-loop
type., The input {s

ngaL oA
=13 LOWP <ot }.1 CONBTANT L
1 e -¥

VOLTAGE -
e —-—J CONTROLLED
QSCILLATOR

()

Fig. 2i. Example 4. (a) Phase -locked loop, (I, Equivalent sysiem,
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’ t
x(t) = X cos Kwot +f s(7) ri?\ (158)
-

/

where w_ s the frequency of the system's voltage -controlled oscillator. X ie the signal
amplitude, and s(T) is the modulating signal. The equation for this .uultiplicative
feedback system is

r(t) = -XK_Igl [cos (wot + f: s(r) d'r) gin (wot + ft rit) dr)—l (159)
- , - |

where I__1 is the idea' lowpass filter,
Expanding Eq. 159, we obtain

t
r(t) = =XKL, [un <2u°t -e-f {r(r)+a(n)} d*>
=t

+ sin (./:; {r{r)-a{")} d‘?)] (160)

Since L, is lowpass, the term with frequency centered at 2w, can be neglected, and
r = A sin {H,[s-r]}. H, s an ideal integrator and A is a gain constant, where A = XK,
A diagram of this equivalent system is shown In Fig. 21b, in which

Niy}=A siny (161)

Solviug fv - the fiest three terms of system L, we obtain

Ly(s) = 74 (162)
LJ('I"Z"J) "7 nlA’(nal:?::S:)- LR !HK i 5Fl\ 8y !l- A (163
Lyloyoeeng) e - '1A:.'l'+" ¥ ::52 A {%‘ (s;+:z+A) i %’}

X "'TI*_X #ﬁ (164)

First, the ayatem step response will be computed. If the input s(t) is u step responae
Su(t), then a good approximation to the output rit) for S/A% < 0, is given by

rit) = rl(t) + l'3(t) + rs(t)

Amvociated with LITELEY and ry are the multiple .order transforms:
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R, (s) = L!(s)%

S §s
Ris)op o 8y) = Lyley8p085) 5, & v,

s, 8
R(S)('l' ...,35) » LE(sl" ...l!-‘) "'; Ve i_s

Converting these to the first-crder transforms Hl(u). Ra(u). and H.(s), and inverting
(see Appendix B. 2 for detalls) gives:

2 4
(0 = 3{1 (- f 5 e 4555) o7

2 4 2 4
-2At S S =3At
+< A'”i">° 'GTZMT‘>°
g8%) At s\ -sat

2 4
18 5 ~At
(153 a )

For small S/A, the system im linear with a response, r(t) = 5(1-¢ and it departs
signifcnwtly from this linear operation as Sz/Az approaches 0,5, It should also be
noted that if 3 ~ 7., w.en the system becomen unstable bacause the form of N (see Eq. 161)
restrirts the output 1r to be less than A, und siatic balance is no longer possible,

The system steady -state distortion with sinuanidal input can be readily obtained by
the appropriate substitution of jw in the system tiransformse (Equ. 162, 163, and 164).

wira
Ira

n

'At)'

3,8 SUMMARY

The basic material for the analysis of Lontinuous nonlinear systems with determin.
istic inputs has now been presented. An algebra of systems has been “\sed to describe
a system in terins of {ts component subsystems. From this description the system
transforme can be found, These transfor:as can then be used to determine the system's
reaponse to various inputs,
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IV. REMARK ON APPLICATIUNS OF THE ALGEBRA OF SYSTEMS
AND SYSTEM TRANSFORMS

We ghall be concerned tere with several topics that are extengions of the materjal
presented in Sections I.IlI, The first ropic concui 219 the use of the algebra of systems
for block -diagram manipulations.

4,1 BLOCK-DIAGRAM MANIPULATIONS

An example will be given to illustrate how this algebra can be used to perform black -
diagram manipulations. It will be shown how auch manipulatiolis can be performed alge -
braically, rather than through a sequence of diagrams.

o L. '

[ )l 114, !

:

(8]

_'.(.i_.-_. .'I«T‘J_'.
- -—'~U_ ' EI !

te}
Fig. 22. Block-dir ,re:n maaipulation: (a) feedback aystem; (b) first
equivalent system; (o) second equivalent system,

Consider the feedback aystem of Fig, 22a, in which H = _ljl + 51-. II; is the linear
part of the system H, and HT i3 the .onlinear part, Tho ohject of this example is to
show how the linear part of a feedback system can be isolated, Wehave L = J+ H* L, =
1+ (H+Hy) *L,ondthen L« L+ H) * L+ Hy * L, or, if we take [I) % L, over to the left-
hand side, we have

(bH)) *L=1+HT* L (165)
Then
(=5 % (1-H) ¥ L= (187 * (el L) (166)

nr
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L= (1-H)™h * (i oL (167)

Equation 167 is the system equation for the system of Fig. 22b, with the linear part of
the system concentrated in the forward loop, Note that the linear part ~ L is given as

-1
L, « (-8,
Now, {tK = L7' L, then L = L) *;’, and from Eq. 165,
Kul+ (Hyol))*K (168)

Thus, another equivalent configuration is obtained as shown in Fig, 22¢. A third equiv-
alent configuration could alsn he obtained with L, in iiont of the nonlizcar feedback
uystem.

There are several reasong why such changes in a feedback system may be desired,
For example, it might be more deairable to construct the gystem in one configuration
than in another, Or, some particular configuration could be the basis for an alternative
system expansion, For example, Zames (10) has developed the concept of expanding a
feedback systemn in a seriea about the linear part,

¢,.2 COMPTLEX TRANSLATION

The complex translation theorem of the theory of linear analysis {9) can be stated
as foliowe

If #(t) hac u \cansform F(s), then ¢ *'ii) has a transtorm P{s+a).
Hera, a is &2 complex numbler. A similar theorem holds fnr higher-order transforms:

it fn(tx,. .. ,tn) has an n-dhaensional transfori F (8,,... .ln). then exp(—uxtl--. .o ~nntn)

fty,..s, tn) has a transiorm Fn(lli'll. counBta)
The Bys By ser, B Are CODE oX numbers, and the proof is essentially the same as the
prcof for the linear case,

This translation can be useful in finding the envelope responde of u systemn. Fora
linear system H,, with transform H‘(n), let the input be the real part 3 x{t), where
x(t) = et) exp(jult), and e(t) is real. If the complex output, “(t), is In the form

jult
£(t) = oft) e (169)
where oft) is ihe complex envelope, then
O(s) = H,(s+jw,) E(a) (170)

as can be shown by the translation theorem. Then oft) is the envelope of the output
sinusoid.

To {llumtrate the use of the iranslation theorem for obtaining the envelope of the
output from a higher-order system, consider the third-r Jc system ﬂj, with the input
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z(t) = Re {x(1) J**9}
whare x(t) is real. By expe..ding
x(1) x(t) _.._ 3
o 20 20 ]

a4 we dad for the steady -state situation, and applying the translation theorem, it can be
shown that the complex envelope of the third -harmonic output har a third -order trans -
form:

%x(-l) X(s,) X(s,) Hg(axd-ju, Bytjw, By +w) (7

when X(») {s the transform of x(t). The third-oraer transform of the enevlope of the
first -.ovder harmonic is

-'}x(ul) x(oz) x(-,) Hs(llﬂw.lz'ﬂw,l:-ﬁd) (172)

and the associated firat-ocder transforma can ‘hen be tound by the methods of Seciion 1ll.
This procedura for finding envelope reaponses gensralizes, in a straightforward manner,
to systems of any order,

As an example of the calculation of envelope 1~3ponses of nonlinear systems, con-
nider the feed-through example of section 2,6. For this system, L,(s) and L,(ll,lz,ls)
were developed in section 3,3,

Assume that a is sufficiently small that the third -harmonic output from the system
is nenlipible, and let the input x(t) be

n(t) = i sum wot ta»0
=0 t«0
Then the output can be shown to be
t(t) = (0, (t)}+o4(t)) cou wot ta»0

The transform of ol(t) is Ol(l), and a third.order trensform, O,(ll. (P9 |3), and a first-
order transform, 03(1), are asgociated with os(t). Thua

O,(s)=L (u+ju)-’£~ mABX
! ! 5 (gta)(s4h)

and
03('1; 52; l:) L L3(.l+j@; lz"'J“’o ‘3"1“;)
nsAB’x’
(s +5,+8,+a)(s +P)(s,+P)(n+B)

«d
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It is assumed that ¢ and B are much lese chan Wy and poles far away from the origin
have been neglected, By use of the inspection methods of Section 111, 03(5) ia obtained
from 0(3)(51, 84, 33), and

.13,3
Ole} « 3 X
e {s+a)(m+3p)

Inverting O,(s) and 03(1) vielda

n,HKX -
0,ft) wdo T (omat -e"ft forta0

(f-«)
and
3,3
n,KH’'X
0,t) e Kl (e'"twe'”t) fortaa
(38~a)
where (ol(t)+03(,t)) is the envelape of the output sinusvid,

4.3 A FINAL-VA.UE THEOREM

A variation of the final-value theorem (nee gec, 3. 4) will now be given,
Iy, ..., t,) has a transform Y(ll, ++¢18,), then

H:.\ »'Itu ‘. -.t_) = 1lm Y(.‘. .'."ﬂ) lli
tyem - 8~+0

It {s also true that
1 senast Um Y(u,,...
Myl ) .1_130 (CITRRPIY s

tj" L] [ ] 1-* 0

and 80 on, for any number of variables. Thia ix proved in Appendix A.3. The condi-
tions for validity are similar to those for the final-value theorem of linewr theory, This
theorem will be applied in Section V, but there ia one use of it that will be mentioned
now,

Conaider the sysiem of Fig. 16, For the second-order system, L, discussed in
section 3,1, we have

A’B
(ll+lz+ﬂ)(ll+n)(l2+u)

Lz(.lu .2) -

Let the input be x(t) = y(t) + e(t), when z(t) is a unit step that starts at t = -m, and
y(t) is some input ihat ntarts at t = 0, Then the output Y i given by
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fo = Laly®) + Lplyz) + Lpa)) (173)

Since the system has reached steady state before y(t) iz put 'n, Eq. 173 shows that the
system, as far as the input y(t) is concerned, is of the forr

2
f, = Hy(y") + H (y) + Hy
where H  is a zero-order system — that is, & conatant —and H, = L,. Heuce
A%y

H ( » ) = e
2182 (lx+lz+p)(ll+¢)(lz+u)

Now, 2L,(yz) = H,(y), and by applying the limit theorem, we find that

H,(n) = lim 2L,(s,p) £
1(-) p':no z(. P)P

2A%B 1 1

W et

¢ m (s+a)

The {inal-value theorem aisc gives ho‘ the constant associated with the system l;lo. and

h o= lm L,(s »)-"‘213
0" giTp L2t s
8,0

Thiz peah' . introduces two connapts: (a) the idea of describing a system about a
de input, and (b) the use of this moditication of the fir .\-value theorem to find the trans -
forms of the new system, In general, a systein of any order can be considered in this
fashion,

4.4 DELAY THEOREM

The delay theorem states that if the system T is a pure delay (or advange), with
y(t=T) = T[yi{t)], then, for any nonlinear system H, T*Ha«H * T,

This follows from the physical reason that it doos nct matter if a time delay precedes
or follows a system operation of any kind, The particular case

TH, =H *T
can be derived from transform theory because

".‘T" X} ".nT
e Hn"l"""n) (l74)

is the transform of T* H , and
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-ulT—. . --snT

Hs),..o,8 ) e (175)

is the transform of _l_in » T, Obviously, Eqs, 174 and 175 are equal,

4,% DIFF..AENTIATION THEOREM
If D ile a differentiating system with
Dlyt) = ad; vlt)
then
D *H, ~nH ° (D1 (176)

where 1 ls the identity syatem,
We shall prove this by usiag transform theory, The transform of D is s, and the
transform of 1 is !, and hence Ircm Eqs, 90 and 95, the trunsform of nﬂn o (D n) in

nH, (s),...,8.) 8, (177)

Applying the symmatrization procedure of section 2, 9 gives Eq, 177 in symmetrical
form:

Hn(.l. vy ln)('l"‘u . o+ln>

The tranvfur.i wi D * 'Hu M |

(8400048 ) Hn(ll. ceoay)

by application of Eq, 92, Since

Hn(ll, ....ln)(ll'h “"n‘ * (ll+u.+ln) Hn(”l' - ,an)

it follows that Eq. 176 is true,

4,6 LIMIT CYCLES

A feedback systom (see I"ig. 23) for which the total system operation around the
loop is L, with L =@ * P, ig in force-free (no driving input) balancz, in the steady etote,
when

Lix]=x (178)

in the steady state, The particular functions x(t) thut satisfy Eq. 178 are called "limit
cycles." It {s seen that x(t) = 0 satisties Eq, 178 (I, is ussumed to have no zero-urder
part). Therefore all systems have at least one limit cyale, If Eq. 178 has one or more
nunrero solutione, then the system output, under approp at: initial excitetion conditions,
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will tend toward some one of these solutions in the
steady state, A system is, then, unetable if nonzevo
lir-it cycles vxist.

Some of the cycles themselv2s may be unstable —
that {8, the output will tend away from these unstable
limit cycles, rather than toward them, If x(t) = 0 ig
an unstable limtt oycle, then the system is small-
signal unstable. That is, any small signal will cause a system exeitation that will not
die down,

Returning to the balanne equation (Eq. 178), we let [, = Hl * K, where H, is a linear
lowpass system, und K is a nonlinear systers. In this case, the balance equation in the
steady statc oan be solved by assuming that

x(t) = X com wt (179)

Fig. 23, Feedback system.

Note that it does not maiter if casoade compnnents that make up L form a cyclic permuta-
tion, For examp.e, AB*C, B*¥C *A, and C * A * B are equivalent forms of L, as
far ss Eq. 178 {s concerncd, All we are doing is writing the balance condition at a
dlfferent point in the loop. The particular form used is determined by finding out which
form gives the easiest anawer.

Following the solution of the balance equation, we have

K([x(t)] = K(X,©) ong «t + higher harmonics
where K(X,w) is a function of the amplitude X and frequency w, Because of the lowpass
charo "ter of H,. the solution

Hl(jw) K(X,w)a 1

for X and w is a closely approximate solution of the balance equation. This is
the "describing function method" (8), and the value(s) of X and &, so found, give
Eq 179 as the limit oycles), A limit cyocle is stable if changing the amplitude X to
X + AX gives

Hl(jm) K(X+aX,w) <1 for X +AX>X
and
H) (jw) K(X+aX, w) > 1 for X + AX < X

Otherwise, the limit cycle is unatable,

For any system in which the loop vperation L can be described by the functiona!
series, or polynomial, the transforma .Hn(jul. veve jwn) cAn be used tu solve the balance
equation (Eq, 178) in the steady state, at least if the number of har' - ’nics invelved s
not too large. It can be assurned that

2x(t) = X ol 4 X o™ity xzej?‘"" s R el
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and tlie values of xl, xz, ete,, and of « that satisfy Eq. 178 can be found. The xt) so
found are limit cycles and their stability can be investigated, as in the previous special
caaea, by iinding the effect of a amall amplitude change,

4.7 MEASUREMENT OF NONLINEAR SYSTEMS

Our final topic here is the measurement of nonlinear systems. Two techninues will
be mentioned — time - domain and freguency -domain measurements. The dircussion of
the measurement topic will be completed,
in Section V, by describing a measure.-
thi ment procedure based on a white Gausslan-
noise input, The discussion here shows
only that measurements are theoretically

/ LN possible, Thus far, no such nmeasure-
_/ ments have been made,
Unlike the input-signal amplitude in
ta) linear sysiems, the amplitude of the input

signal of a nonlinear system ia of great
importance, Both the analysis and meas -
urement of a nonlinear system are depend-
ent on the amplitude range of the input
signals for which the system is to be used,
b N — For this reason, the input test signals
shiuld be bounded signals, and, further-
more, the amplitude of these signals need
Fig. 24. x:n“:fr %T:&::iﬂ,(‘t‘.),d'&')'{ﬁ::; aover only the range that is of interest,
coefficient m (). ' For the reasons mentioned, we shall
adopt the step function for the input test
signal for time-domain messurements. Consider o nonlinear system L, with L= L, +
Lptcoo vy +..., and £ = L[x]. The output f(t) for an input step function, x(t) = Xu(t),
s

m (1)

L]

t n t .t
f(t)-xj; ll(f)d-r+... + X f; ...JO ln("l“""n)d'l cevdT ¥
For a perticular value of time, tl‘

fe)) =« Xm () + X2myt )+ os +XPm (1) + .. (180)

where

Y t
mn(tl) .'/.0 . '/; ln(Tl. ey rn) d7y ooy d1,
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Equation 180 is a Taylor series in X, nnd the output f(tl) is dependent upou X, «u -hown
in Fig, 24a, If f(tl) is founa experimentally as a function of X, then it ia theovetically
possible to igolate the coefficients mn(tl) in the Taylor's series, If theae coefficients
are obtained al a set of thaes t;, ..., ty then they can be plottcu. aB {8 shown ia
Fig. 24b for m,(t), to determine m_(ti.

The impulse response of L‘l' can be shown to be the derivative of ml(t). and Bo

1,00 = § my ()

Therefore, the impulse reaponse ll(t) can be theoratically determined,

Now, the imipulse response of L can be found. To do thir, we take as input x(t) a
yit) + 2(t), where y(t) = Xu(t), z(t) » Xu(t+T), and T is some positive number. The out-
put, then, is

€)= Xp, (1) + X2p,(t) + o0u + X (1) 4., (181)
where
t t
pn(t) -j; oo J; ln('rl. con T Xtery) ooy x(ter ) dryuy dng
Agein, the pn(t) can be determined by the use of Taylor's serics, as the m (t) were.

The term Xpl(t) is not needed and can be ignored, From pz(t) the impulse response
1 z(‘i‘ tz) can be found in the following way.

2

Pz(” = ldu“) )

= gz(yzﬂlyﬂz)

ft'/'l 1 ./‘tj‘ﬂ'." ( |
2 v, T dr,dr, +2 ly{ry, 1,) dr,dr
0o F AR L 1772 0“0 2'1’ 2 172
t+T pt+T
*1/; fo Ty mp) drydmy

t pt+T
. mz(t) + 2./; fo lz('rl, 'rz) dr dr, + mz(t+T)

But, mz(!) 18 known, and so the term

t pt+T
g, (8, 14T) /; '/'0 1 (v, 7,) drydr, (132)

can be isolated, Repeating this measurcment for a rumber of values of T will pruduce
the two.variable function g,(t),t,). Then it can be sh: vn that
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g
Lt ty) = Bt, b1, gt 1)

and now lz(tl'tz) can be theoretically 'sterinined from gi.(tl'tz)'
In @ similar manner, l.‘(t‘, ty, t3) can be found by using an input triplet of step fune -
tions, that is

at) = Xult) + Xu(t+'rl) + Xu(t+Tz)

Theoretically, the procedure can he continued to find the l"(t!. Ve tn) to any order n
that is desired,

The frequency .domain measurements ure aimilar to the time-domain measurements,
in their use of Taylor's neries to isolate the vroricus terms, We have

2°(t) = Hy[x(t)] + Bplx(t)] + .0 + H[x(t)] + ... (183}

where H, has a transform H, (jw), H, has a transform H,(jw), and 8o on, Let the input
x(t) be a sinusoid, and then

x(t) = X Re {e)*}

where X is a real number, Direct application of the steady -state methods of section 3.3
gives an output that im the real part of

2) = XH, (J0) ¢t + 1 %3H, (ju, ju)

+ -é- szz(ju, jw) 20t

+ 3 X°H, () Ju, =jo) e

1

Y x3H3 (o, Jw, o) @339%

+

+ 3 XY (o, 0, jo, =30) + 10, (184)

Steady -state harmonic measurements ckn be taken to determine the coefficients of

.jnut’ which are

%Xzﬂz(ju. =jw) + %x‘H‘(]w. Joi, =Jw, =jw) + ..
forn =0, and
XH, (j0) +3 X Hy (o, g, =J0) + 0.

for n a1, and 8o on. With measurcments fur various frrequencies and values of X,
the Taylor-series approach can be uged to isolate Hl(ju). H;_(ju. ), Hz(ju. -jw, and 0
forth. In a manner quite similar to the previous use of rmultiple -step inpute, input
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sinusoids c¢f the form

Juyt

] Ju,t
Xe 2

+Xe
are uged to obtaln Hz(jw. juz). In general, multiple sinusoidal inputs can be used to
determine the Hn(le, Cens jmn).

Two methods have been describad fur the determination of the impulse reaponses or
transforms that charscterize a noniinear system, In Section V, anothar te**-od, bascd
on & random input, will be disquased,

Note that the measurement of impulve responses and transformu is considerably
more complicated than such measurements for linear systems. This is t¢ be expected,
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V. KRALDOM INPUTS

5.1 INTRODUCTION

In Sections I-IV we have been concesned with the functional representation of con-
tinuous nonlinear systetng, and with the use of this representation in conjunction with
deterministic inputs, We shall now conaider random inputs, Output averages =nd cor -
relation functions will be computed ..y means of the functional represeatation, Gaussian
inputs will receive the principal exmnphuasis, and certain optimum operations on Gaussian
and Gaussian.derived signals will be developud, A system-.measurement technique based
on & white noise input will be discusased.

5.2 OUTPUT AVERAGQGES

Let us consider ' = H[x], where Ha H, + H, + ... + Ho+ .o o Atyplcal term is
f,(t) = H [x(t)]

"/.oo.f hn(‘rl“”‘ Tn) x(t"'l) e x(t-'rn) d"'l 1o d‘!’n (185)

and
2(t) = tl(t) - tn(t) S (186)

Now, .ak'=r avarages on both sides of Eq., 186, we have

ﬁﬂ-tl'(t~)+... +f;‘Tz7+...

and the object is to find i(t—)'by oomputing the i;(-l)- (Here, we consider all random eig-
nals to be ergodic, Therefors. averagres can be taken as time averages or ensemble
averages. The average of a signal s(t) will be denoted g(t).) This tn(t) is given by

“-n—-(t) 'fa-nf hn('fl‘ l-uan) x(t'fl) et x(t-‘rn) dTI e d"'n (187)

Interchanging orders of integration and averaging in Eq. 187 gives

G0 [ [ ) xtter ) o)y oy (188)

If the correlation function x-(tl) i .T(Tn—)- in known, f:t—) can be fourd by performing the
integrations of Eq. 188,

It is convenient to introduce & short notation thet im related to the vperator n~tation
used previously. In this notation Eq. 188 becomes

fn a B”(x!xzu “a xn)
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and the average of the output f is

[, = % Hn("l" x)

The subsacripts 1, 2, ..., n refer to the subscripts of Tyr Tor sees T in Fq. 188,
Similarly, for the caloulation of output correlation functions, we have

Ht) () = {r, (04, oo+t (004, 0 F{E (O TH L 42 (4T L)

'z th:('tﬁ")' (189)
m n

and

fm(t) fn(t;';i - f. . .f hm('r!, Cees rm) xli=7)) .0 x(t-rm)

d‘rl tae dTm foo-f hn(Tl".”Tn) X(H'T-'r‘)

Voo KEHTer ) dry L, dn (190)

After rearrangement and interchange of the order of averaging and integrating Eq. 190
becomen

bt ’
I TN
‘m(ﬁ ‘n.w LY} ‘J ooof hm("l.nu.'fnl) hn(T+Tm+l,.¢..T+fm+n)

x(t-'rl) vee x(t"mm) drp oo drp (191)

The "impulse resporse" in *his expression in that of the system H  « (B*H ), wheve P
is an ideal predictor with time shift T, and has an impulse vesponse 6(t+T)., We abbre-
viate this as H l_-!;f. and then Eq, 189, in the short notation, oscomes

———

E) (£ (60T) = (B oHE )k o X (192)

As in the previous case, the output autocorrelation funation ocau bo computed if the
higher .order input correlation functions are kuown.

5.3 GAUSSIAN INPUTS

In the important situation in which the input signal ir Gaucsianly distributed, the
caloulation of the output aversges (s not too difficult, Emphasis wi.. ou pluved ou suci
inputs, First, the spicial case of white Gaussiul inputs will be considered and then
this will be generalized. Wiener (5) has rigorously considered iho white Gauseiar-input
case,

60




If x(t) is white Gaussiah w..u a power density of 1 watt per cyele, then
x(t) = 0
x(t,) x(tz) = 6(‘Z-tl)

x(tl) x(tz) X(ts) x(t4) = 6“2'11) 6(t4't3) + 6(t3-tl) 6(*4-tz) + ﬁ(t‘-tl) 6“3"2)

and 80 on, where 6(t) is the unit impu'se function, li general, the average is zero {f the
humbher of x's is odd, and is a sum of products of impulse responses if the number is
even, In general,

x(t) o xltg) u Y, 1I:I1 Bty =t,) (193)
The product is over somae set of pairs of humbers taken from the numbers I, 2, ..., n,

such as (1, 3), (2,4), (5,7), and so forth. The sum is over all such sets,
In the n'N.order cuse, there are N - (n-1)(n=3) ,.. 1 terms in the summation, and
80 for n even

}:"-ﬂn.(xl"'xn;' f,,.f h"('rl, 10 ...,Tn)z &I,]j 6(1"-1'1) dry .. dr,

" fo BTy Ty T g T s Ty go) 4Ty ATy e ATy gy (194)

where h (tl. ooty ) is symmetrical, (Note that becnune of this symmetry, the various
terms in the suin ot Eq. 193 cewtribute ‘dentically in Bq. 194,) Hence, f(t) can he deter-
mined by perforning the integration of Eq. 194 for each of the fn(t) in the sum

ot = 3 1,0) (198)
n

A typloal term in the correlation function equation (Eq. 192) is

(ﬂm'lj:) (;-lT' 'xm+n) (196)

where (Em-lj:) has an impulse responsa

W (tyees .tm) hn('r+t Tt (197)

melreer m+n)

and this inipulse responre is not symmetrical. Therelc « it is necessary to take into
menount the varicus termas of Eq, 193, For example,
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o)

— pAppn
X X, X )=J‘ff ol 7,0, (T4 Thr,)

X XaX3¥y
{6(1-,_-1!)6(14-73)+6('r3-1-l)6(74-r3)+6(74-71)6(13--rz‘l} d?ld'rzdf’d‘v.‘

-
'ffhz‘*l"x)hz‘*z-*z) drydmp+ 2././.“2"1'*z’“z(T”l'“"z) drjdry

(198)
In a similar manner, we obtain

(ﬂl a’,’)&:;g;;) "ffffhI(Tl)ha(T+7z,T+73,T+14)

{6(1'2-71)6(*‘-73)4-6(13-1 l)6(1‘-12)1-6(7‘-11)6(73-73)} dr dr,dr,dr,

- ffhl('r)hs(Th'.o',r) drder (199)

Generally, when we are faced with an unsymmetrical situation it is a straightforward
matter to determine the various terms of expression 197. The general term that arises
in

f... /. hm("'ln veey Tp"l"l' '--'qu"q)
th('“'.rl""'T*Tp‘cq-l-l‘cq-l-l‘“"wl‘"l‘) dTl Ces d'rp d"l e d"" (200)

Here, p+2q «m, and p+ 2r = 2q = n, It shoul! hr‘ remembered that expredsion 197
equals gero if m + n is odd. "nce th. terms <§m'l_-l_;)(¥;. o X ) have been determined,
£{t) £(t+T) s given by Eq, 192,

The results for white Gaussian inputs can be used to obtain output averuges and cor-
relation functions for non-white Gaussian inputs irto a system H. In the non.white case,
the Gaussian signal can be formed from a white Gaussian signal by means of a linear
shaping filter, K,. This in illustrated in Fig. 25. Then, rather than work with a non-
white Gaussian Input to a system H, we work with a white Gaussian input to a systom
H* IS,- Also, If the input to a system H is non-Gaussian, but formed from a white
Gaussian signal by a known nonlinear operation K (which can be expanded in the func-
tional representation), ithen we can work with a white Gaussian signal to a system H * K,

min

NON -
a A'::::u‘m — :::“',,‘,:o . ::u:.','z" Fig. 25, Illustratiug the use of shapiug filter.
S:NAL FILTER K, SloNAL
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5.4 ULE OF TRANSFORMS

The averages givet, for example, by Eqs. 194 and 192 could he found by performing
the Indicated iategrations of the usually awkward impulsee responses, However, this
diffioulty can be overcome by the nse of trensformn, ‘The transforms considercd here
will alws ys be Fourier trancforms {see Appendix A, 1) and 8 = ju,

To develop the use of transforms, three typical eituations will be explaine., First,
consider the term

!_'lnixl. . .xn) = Jr S .f hn('rl, T Tn/" T 2) d"l Pe dTn/Z (201)

from Eq, 194, The transform of h (4,0 ..tn) in R (n,..., un), and heice the trang -
form of hn(tl. TTA ZVINPIN tn) can te obtained by {nspection if Hn('l' - sn) ig fuctorizable,
et ti:e transtorm of hn(tl‘tx'ta' cery tn) be

Kn-l(ﬁl"r veerBy)

Now, the fivst integration of Eq. 201 can be performed, Thig integrati~n is

fhn('rl. Tln 73. e, 'fn) d'l'l

and i can be obtained from Kn-l('l‘ +++,8,) by the method uf section 4.4, That is, the
transtor...

al’i-r:lo Kialeps,, .., s,

Let this expression equal L"_ -.(l,. Cone ln). which is the transform of

The operation cen be repeated on Ln-z('s' iey 'n) to perform the secund integration of
Eq. 201, and 8o on until it has been evaluated.
As an example, conside:

ff'd('l' T1e Ty T dTydT, (z02)

whe'e l‘(tl, tyrty, t4) has a transform

A 1 1 1 i (z03)
'l*'z*'a*'&*“"l*p'z+’53+p'4*° -

The first assoriation gives
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A 1 1 1
EITREVEEET AR B, KR TP
and taking the limit 8, = 0 gives

A 11 1
5, 1By a 28 B, TP g+ P

Associating the other two variab.2s, we obtain

A _A 1 ]
TR EE ) (204)
and
1 A 1 A

- ; e 205

ff‘o‘('l' Tt ) AT My T TR IR Tt (205)
The second gituation to be gtudied is

ff B (T vees 7)) K (THn), o0, Tong) dry ooy dry (206)

As we have done before with transforms, wc introducsa Tl‘ Ceey 'I‘n intn thig term
and consider

f. f h(ry e ) e (T b LT b dy e dy
Taking the higher-order transform of this ex rassion yields
Ho(mp,=8 ) K (8,..0,8) (20°)

The actual trunsform of Eq. 206 can now be obtaired from Eg, 207 by assoclating
T oo Tn with T by means of the inspection technique if the trunafurins are factor -
izable.

In using the inspection technique it should be noted that the contribution of terms of
the form

l"nH(Bl‘“'"n"i"j) P(si) Q(-nj) (208}

is zero when Ti and T are msgosicted. This is su Lecuuse the T1 aud T, in the inverse
transform of Eq. 203 are in disjoint regions; that is, T1 > N and "l"j < 0, lirnce there {8
no contribution for t = 'l“ =T,

In order to illustrate the meihod, consider the 28c¢ in which
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) it 1
(-8, =5,4P)(8 +8,+B)(--8  +u)(-& ,4a) (sln)(sz’ra)

Hz(sl,sz) HZ(-s ‘,-Bz) 2

- A S VR WL 1 (N S S
4’ (-8, -8,+B)(s +5,40) TF1 T2 8 F “f “Bpta B, te

]
S

WL K2 1 1
4a’ (-ul-azw)(slﬂzw) (—nl+a)(-sz+n) (slf-n)(s.{.'-o-a)

+ 1 L — (209)
(ull-a)(-sz'-‘ a) (=8 l"’l"'z“)

Assoclating the variables by inspection yields

2
K 1 1 1
— o it (210
40 (=a+)(84P) {—-ah.a 3+2¢} )

and the terms involving [(sl+a)(-|z+¢)]'l, and [(-nl+a)(l¢.a+¢|)]'l give no aontribution,
Equation 210 {8 then the transform of fjhz(-rl, -rz) hz(’r+-rl, T+-rz) d'ldrz, where
hz(tl. tz) has the transform "z"l"z)'

A third situation that arises is

ff hn('rl,....‘rn) km(*l"T"""n*T"l"l"""p"p) dr) ovudr doy o, do'p

where m + n {5 ¢ven, p = (m-n)/z, and m 2 n, Fivst, consider

f...f km(tl""'tn"l"l"""p"’p) CLIR da'p (211)

whece km(tl, et tm) hao a treasform Km("l' oo lm). By direct apulication of the
first method discussed in this section, the transform of Eq. 211 can be obtained. Once
this has been done, the situation is the same as in the mecond case and the method
involved there can be used. In a similar manner, the gencral form of Lq. 200 can be
handled.

For example, consider

‘/‘Ihl(‘r\ h3("1‘+1-, r, ¢) drdo (212)

where h,(t), ta t,) has a transform

a+oK+s +u?_lmsl+psl+p (213)
1 2 3 1 2 3

and h (t) has & transforn H/(s+a).
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Consider

fhs(t, r o) de (214)
Assoclating 8, and 5, in Eq. 213 yie!ds
K 1 1 ,
nl+lz+c ll+ﬁ |2+Tﬁ (215}

Lets 2 ™ 0, in order to svaluate the inteyral of Eq. 214, and we have
K 1 1
DEXETES ¥} (216)

which {s the tranaform of Eq. 214, ¥quation 212 has & transforrm

KE 1 1
k) (~s+a) (rv0)s:p)

Inverting this transtorm gives

1 =-ft ~at: )
——— {200 T a(aif) @ far ¢ > 0
2(a+B){a=p) ¢ }

and
~1 0%t tort <0
2a(a+p)

for Ly, 215,

The three main methods for handling thy expressions that arige in computing output
averages nr covrelation functions have veen prysented. These are transform or
Irequency -domain methods. In computing wutoc wrmelation functions the results can b,
left in the frequency domals, i which they represent the spectra.

5.5 EXAMPLE s,

The system for thig exampl2 is shown {n Flg, 26, It in an apparatus for measuring
the average square of the Gauasian signal, y{t). The sigaal y(t) is formed from a white
Gaussian x(t) by means of the shaping filter A, with A(n) = A/lsta), The systom
B, is = physical approximation to an ideal integrator, and By(r) = B/(s+p), The

over-a.l wystem operatiag on x(t) is Ly »
By~ N, *4,, where N, is 8 no-memory

__-_m_,__ W‘ ! Squarer, andn, = 1,

Firat, we =ahall obtain the verage

Fig. 26, Apparatus for measuring aver square of yit)., This is the sveragc of
8i€ Bquare of the signal y(t), the out. it nf the system H, = Ez * Al
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operating on x(t), The output .. sm H, is yz(t). Then

Yz(t) = ﬂz&-l;z-)
" ffhz(-fl, 'rz) 6(1'2-71) d‘l‘ld‘l’z

] fhz(-r, T)dr

and "z(‘l‘ t,) has a tranaform,

H,(s,,8 )'—-—Az
g2 (s +a)(ry*a)

Associeting t and ¢, ;ivez Az/(|+2¢), from Eq. 203, and so

e 2 2
v« tim ohpg e B

Next, we shall obtain the average output from the system L,, where

A’p
L ' = 217
2(0182) (s,+8,48)(s,+a)(s,+a) (2i7)

Ansoniating the var' " o8 gives

__ A
(s+B)(n+2a)
from Eq, 204, Then

~— 2 2
. A’B__ _alp
) :1-'“}) (a+B)(s+2a) 2° L3

and £(t) » y“(t) when B = p, We soe that the apparatus does measure the average of yz(t).
However, the output f(t) is not a constant, but a rando:n variable,

To conclude this example, we obtain the output spectrum Q‘(u). The output autocor -
relation is given by application of Eq. 199!

0,('1‘) . jflz('rl, ) lz('rz, 1,) dr,dr,
+ afflz(rl, Ty) 1,(T+7), THr,) dv dT, (218)

where lz(tl,t,) is the impulse response of the systerr . he first terin o. Eq,. 218 can
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be shown (see Appendix B ?) to equal (Az/Za)z, when B = ., Also, from Eq. 217,

2a%p? o (213)
(~8,=8,+P)(s ) +8,4B)(~8  +a)(=s,+a)(s,ra)(s,+a)

ZLZ(-sl.-sZ) '-‘z(’l"z) »

and application of the inspection method (see Appendix B, 3) glves

2a%B? )
ur +? ;T-O- 4a

when jw = 8, Therefore, the spectrum °l(“’) in given by

oo +(4) s + 240 1L eeo
t Zap urﬁ' pz uz + 4;2_

5.6 EXAMPLE 6,

This example is converned with the feedback system of soction 3.5. The problem is
much the same, except that here the input is a random signal, Gaussianly distributed.
Our object is 10 use the nonlinear compensating device N to decreass the servo following
error and still meet a constraint on the maximum allowable rms acceleration,

The system input is x(t), the output is f(t), and the following error is e(t) » x(t) - f(t),
The acceleration of the motor is alt) = d/dt f(t).

Firot, we "*:u consider the linear, uncompensated system with N = I, The input
spectrum is

2
B
] = (221)
(¥ Tt "
The pertinent results (see Appendix B, 4) are:
- 2
Qz = -?x (222)
ot . AR (223)
= -—-2—
- 2
12 %. (20 4)
2 B
.:.2-. T (225)

where A > 10p, in order that the following error be small, If M is the mnxlmun: allow-
able rme acceleration, then minimum following avor is obtained for A = ZMZ/B".
The rerults for the compensated nonlinear ays.. .11 vith N =1+ ?1_3 (see Appendix B.4)
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will also be gtated:

- g2 4 6

2 _ B . 3 B 312R

e = - +—.n _-_.+_n —
2A 7 ¢ 3427473,

— 2 4 6

2 _AB 3 B 21 2B

L *4“3?*32“3Az

and

“a H 4 6
2 B 3 B 3. 2B
" = +en, S5+ an, o
IR - R At
where n, is ..iten sufficiently small that only the firat three terms are sigrificant, Now,
for example, we shall take the numerical values: B . 1/2, = 2/30, and Mm% - 8/32,

Then for the linear case, the largest allowable A » 20/32 and ez/fa = 0, 05,

For the nonlinear coinpencated case, with ny = --%-, the allowable A is 1, and
:z/f =0,021, This represents u 60 per cent decrease in the foliowing error,

This example shows what can be done by applying the functional representation to
nonlinear systems with random Gaussian inputs. It also illustrates the possible use of
nonlinear elements for servo compensation when the input is a random signal.

5,7 OPTIMUM SYSTEMS

Thie 8- tinn Aegla with the prollem of obtaining the realizable system that best
upproximater 2 sesired unrealizable noalinear system or operation. The desired sys-
tem is unrealisable because its impulae response "starts before t = 0," Best is to be
taken in the least-mean-square sense; that is, the average squared error between the
output of the realizable system and the output of the uarealizable system is minimum,
The signals upon which the sys.cmd operate are Gaussian., Barrett (6) has developed
an approach for the general (non-Gaussian) signal, but there are problems still to be
solved before we can take advantage of his approach. In this report we are restricted
to Gaussian signals or signals derived from Gaussian signals,

We shall consider an unremlizable linear system ﬂl with », whitec Gaussian input, and
we shall find the optimum realizable system. Let the impulse response hl(t) be nonzero
fort <0, Then

]
) = f hy(r) xt-m) dr
-0

or, if we divide the region of integration into two parts, we have

0
f‘(t) » ’/:m hl(-r) x(t=7) dr + ./;“ hl(-r) x(t=1) dr
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The ~eglon ® to 0 covers x(i) in thr iuture, and the region 0 to w covers x(t) in *he
past. 1f we know only the past of x(t), then fl(t) can only be estimuted. The best mean-
square estimate of £(t) is ‘l(t)' with

) (t) = average of f,(t) over the future (226)
or
(1) _/'oh()m )d-r+f°°h('r)x(t v d (z27)
= r - - T
8 v 0o

Equation 227 fullows from LIq. 226 becmuse x(t) is white, and therefore the past and
future of x(t) are uncorrelated. Since x(t) = 0 ‘or a Gaussian (zero-mean) signal, Eq, 226
becomes

L]
glt) = /; hy (1) x(t=7) dv (228)

and the best estimete, g(t), has been found, Putting this another way: the unrealizable
impulse response hl(t) has been replaced by kl(t). where

hl(t) for t » 0
"1“) =

otherwise
and

[T xttem) o (229)

This is a familiar result from linear theory.
Now we shall do the same thing for a secuud -order system ﬂa, in which

fz(t) -'./:: -/:: hz('x‘ 'rz) x(t--rl) x(t--rz) dr dr,

Splitting the region of integration into past and future regions gives

Y
() = '/; '/:w hylry, 75) Klt=ry) xlt=r,) dr dr,
0
+ 2‘/:” j;“’ hylTy, 7) X(t=7,) x(twr,) dr\dv,

0 ]
. j; hylry, p) xlt=r)) xlt=r,) d7,dr,
The factor 2 in the second term is obtained by taking advantage of the sy mmetry

ot hz(tl.tz) and combining two terms. Again, g,(t), the best cstimate of f,(t), is
obtained by aver:ging over the future. Since x(t) - white Gaussia;, the past and
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fuiure are independent, and

0 0 —— —
gz(t) = /:w '/:w hz('l' ‘l'z) x(t-fl) x(t--rz) d?ldfz
0 ————— e
+ zj:“ j:’ hz(‘?l, -rz) x(t-fl) x(t-vz) dr,dr,

w P
0-./.0 ./; hz('rl. 'rz) x(t--‘rl) x(t-'rz) dv,dr,

Parforming the indicated avarages giver

0
‘z(t) = '/:m hz('t 7) dr +‘/;¢ j.o” hz("'lt Tz) x(""’x) x(t""z) d"’ld"'z

Thus the unrsalizable system H, has been approximated by a realizable systain K,
with K » 52 + ;so. and Bz has an impulse response

hz(tl.tz) for t, and t,» 0

kolt,, t,) =
2t e vtherwinse

and Ko is a zero-order system (a constant) of value

0
k!f hy(r, v) dr
o ot F AR

In getweuni, this procedure can b used Lo show that an unrealisable system Hn is
replaced by a best realizable system K(n)’ with

n
n
Bn* 2 (%) Brier (230)
The K, have impulse responses kn-r(tl' . "tn-r)‘ and for r odd and all t; (whare

i=l,,,. :n)o
kn_r(t11 DN tn-r) =0

for r even and all t1 »0,

0 0
] (t‘-l)(l‘-S) e 1 j:.‘ ves f hn(fl' Tl. XN
00

TI’/Z' 'r/z"l“?.' ""tn-r) d"'l v d?r/z
and for r even and some '1 <0,

=0 (231)

Now that the realizable system which is nearest, - the mean-square sense, to a
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Flg, 27. Example 7. (a) Desirad operation. (b) Production of x.
‘f) Desired operation on x, (d) Optimum wystem opera-
tion on y.

desired unrealizable system has been determined for a white Gaussian input signal, the
extenaion to non-white Gaussian signals can be explained, By means of linear shaping
filter L,l. a non-white Gaussian signal can be whitened. Onoe this is done, the optimiza.
tion can proceed with the resultant white Gaussian signal as input, That is, given a
desireu op. ~ il M ~Hy +.u0 + d, tho wignal %(t) 1o wl'llltonad by L, to produce y(t),
and the aptiniicution is made for a desired myatom H # L’l' with {nput y(t)., The result-
ant realizable system is X, and thon the optimum systom in K * Lq.

A further genevalizsation can be made. Suppove that the input signal is the vesult of
{or the statisticnl equivalent of) a known nonlinear opucation, L, on a white Gaussian
signal. Furthermore, assume that this system L has s stable, realizsble inverse, L;l.
Then, just as before with ;_41. the optimisation procedure can be preceded by the ;_..'
operation,

5,8 EXAMPLE 7.

In thin example we desire to obtain the best mean-square eutimate of f{t) = yz(t+T),
where y(t) s & Gaussian signal, and T is positive. In olther words, we want to find the
realizadle sysiem closeat to D,, with

dylty.ty) = 6(t1+'r) 5(t,+T) (232)
Now, take
.t D3 +yd)
y (wzﬂz)(uzwz)
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The shaping filter L’l has a trraeform
D{a+y)

Ll(u) 2

(a+a)(w+p)

We op-~vate on y(1) with 1,.;1 to produce a white Gaussian x(t), as shown in Fig, 27b,
The desiraed operation on x(t) (see Fig, 27¢) is By =Dy * Liy» and

nl'l‘ B, T
Ry(s),8;) e Ll('l) ] Ly(s,)
Applying Eqe. 230 and 231 to determine the bect ~ealizable operation on a white
Gausaian signal gives K = 52 + Ko' and

- T -B(t, +T) "
kalt) tp) -{Pa oty + ’+Qe ey )}

-a(tz+T) =B(t,+T)
+Qe tortl,tnao

s<Pe
=0 otherwise

and
n

T -
ko 2 {./; (Pe™®"+Q e W)dr}

where P = Liy=a)/ (7.}, and @ = D(y=p)/(a=p). ""'he optimum operation on y(t) is, then,
K * L)", and the optimnm aystem is shuwn in ™ig, 27d.

5.9 EXAMPLE 8,

This example deuls with th. predictiun of y(t), where y = (N*L.l)[x]; %(t) is o white
Gaussian signal; N[z) = & + &3; and

L » l 3
l(.) (w+a)(n+p) (233)

Operating on y(t) in produce
xx (it )

and performing the optimization on x(t) gives an optimum pradictor J, which ope:ates
on y(t), with

deMeK, #N" (234)

and

Mlz] = my +y} (238)
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whare

_ a"20A . o=2BA _ a=(oep)A
S L o SR R E -
K/(s)=c,+ c,8 (237)
e A 4 qoPA (238)
¢ —_— 238
! (Berc)
o~9A _ .-ﬂA
o, s 2 =7 (239)
2 (8~a)

See Appendix B. S for further details.

5,10 THEOQRETICAL DISCUSSION ON MEASUREMENTS

The way in which the system Impulse responses may be ohtained by measurements
made with & white Gaussian noise input will be demonstrated here. The quantiiies to be
measured will be input -output orosscorvelations. However, at thic time, much meas-
urements oan only be discussed theoretically.

J.et the input x(t) to & linecr aystem Bl be white Caussian noise, and the output be
£,(t). Then

T A = [ (o) ) o

. fhl(f) 8(=) Jr
. hl(T)

This method, which is known from linear cheory (8), is one means of measuring the
impulse response of a linear system,
Neow consider a quadratic system H, with input x(t) and output tz(t). Then

£,(t) x(t=T,) x(t=T,) = ffhz('l‘ 7,) x(t=r|) x(t=7,) x(t-Tl) x(t-Tz) dr dr,

G RICEER T R RO RN T

+8(T =7 )8(T ~7,)} dv,d7,

« 8=T)) [yl 1) dr ¢ my(Ty 1) 4 my(T, )
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We note that %{hz(TI‘TZM*Z(TZ'TX)} {s the aymmetrical form for the quadratic imbulse
response, and so

() ¥ ) KTy = 6(TyT)) [ myfom) a1 2hy(T )

Meagurement of this second-order crosscorrelation, fz(t) x(t-T ) x(t="T z) o ’I‘l ¥ T
therelore ylelds h (’T'l.T ) tor '1‘1 # Iy, The function h (T T) can be obtained by cvon-

correlating f,(t) with {x (t=T)ex (t)} Then we have

tz(t){xz(t-"l‘)-x (t)} = 2hy(T, T) (240)

For white noise xz(t) dnes not exist, but it does exist for any practical approximation to
white noise,
For the cubic system ﬂ,, we have

[0 X(4-T,) st=Ty) K(E=T3) @ 60T T Ty) + 38T,T;) [yt ar

+ ,6(T1'T3) fh3(T:Tsz) dr + 36(T2-T3) fh3(‘r.'r.T1) dr

whick givag h!('l‘l. 'I‘?‘.T3) for T, ¥ T, ¢ Ty To obtain h,('rl.'rz. 1'3) in the excluded

region, meas  =2u.cuis similar to the measurement indicated in Eq, 240 can be made,
Higher«order systems Hn can be handied in on analogous manner. If the measure-

ments are to be made on a syntema H = “: - uﬁ, LI Hn * ..., then to extract the Hl

term, for axample, the measurement of I{t) x(t=77. wheve f(t) is the output of H with
input Ax(t), may be made for «n input Ax(t) for different values of the constant, A, Then
thy part of £ 7— {t=T) that varies as A willbe h (T).

Slmuarly. for f(t) x(t-T )x(t-T ), the part thnt varies ar AZ ig 2hy (T4, T,), tor
T, #Ty. Thus, the '!‘sylor'l uriu method hus bwen applied again to meparate the var-
louu Bn of the system,

5.11 SUMMARY

We have shown how output avorages and correlation functions niay be obtained for
nonlinear systems desoribed by the functional repressntation. Fmphaais has bsen placea
on Caussian input signals, and frequency-domain techniyues have been deveioped and
llusiruted by examples.

A discussion was devoted to the problem of opilitnum nonlinvar opsrations o1 Gaussian,
or Gaussiau-derived, signals. Two examples of the cptimization procedure were given,

The seotion on theoretical maanurement wao {ntenc ‘1 to show briefly how input. sutput
crosscorrei.!ion measurements can be used to mensur. the system impulse responaes.
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VI. THEGRETICAL DISCU3S!ON OF FUNCTIONAL REPRESENTATION

A uumber of theoretical topics concerning functional repraesentation and the algabra
of systems will now be presented. 1n the first few sections we shal. attempt to place
certain aspects of this algebra on firmer ground. Tien we shall discuss some topics
that p.escribe theoretical limitationa on the functional representation,

6.1 DOMAIN AND RANGE

We have stressed the point that the amplitudes of the input signais of a noulinear
system are very important., They are imporii.it for two reanons: (a) the system may
act in a radically different way for two signals of the same wave shape but of different
amplitudas, and (b) the method of analysis may derand on some limitations on lnput-
signal amplitude. Therefore, to be rigorous, we should associate a certain input limi=
tation with any ns.linenr system that is being discussed, This limitation will be the
"domain" of the aystem, Fnr the system H it will be denoted DH' and it is the class of
all allowable input signals. If a signal x falls ir this clesu we write x ¢ DH (in words,
x im contained in DH). A uonvenient way to particularly define DH is to say that there
exists a positive number of X that i3 such that if [x| < X, then x € Dy, In general,
there are many ways to define the system doimain,

If a Dy isdefined for a system H, then the outputs f that are associated with the
inputs x, where x ¢ DH' form a class of signale, This class will be called the "range"
of the . aliza, »nd vill be deroted Ry, I f = H[x], then !¢ Ry, for all x ¢ Dy,

A question now arises about wiwi Lappens when we additively combine two systemr
of different domains., If L« J + K, where J hus domain D, and K has domain Dy,
then we shall take the domain of L. D;, tu Lc the clasa of signals that are contained
in both D J and DK‘ herefore, we shall contiler only inputs for L, that we know arw
allowable inputs for both , aad K.

Similarly, for the multiplicution combination L = J+ K, D, is the class of signals
contained in both D J and DK'

For the cascade combination L = J * K, we must assume that the range of K, RK'
is contained in DJ. If thir 16 not so, then Dy must be conatrained so that RK is con-
tained in D 7

In this report we havo assumed that these points were implied when we have
combinerl uystems.

6.2 ALGEBRAIC LAWS

The validity of nertain operations, which has previzusly been nswun :d (ree
sec, 2,8), wili be esiablished here. Thesc operations will be presentrd asn 2 set
of theorems.
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THEOREM 1. If A=B te4l)
then A+il-B+H (242)
and H4A=H+B (243)

This theorem holdg also for the minus operatiorn,

THEGREM 2. If A=8
ihen AP H=-B'Y (244)
and H-A=H:-B (245)

THEOREM 3, If A:=-B
then H*A=H+*B (246)
and A*H=E*H (247)

Systems A, B, and H ar= nonlinear. These theorems are easily proved.

Let p = A[x]: q = B[x]; and r = Ji{x]. Then from Eq. 241, p=q. But p+r=q+r,
and so A[x] + H[x] = B{x] + H[«] ov A +H = B+H.

Axiom 1 (Eq. 34) gives H + A = H + B directly, and so theorem 1 has been proved,
The proof of theorem 2 ig similar, Now, theorem 3 will be cstablished,

Take p and q as before, and then, since p = q, we have H(p] = H[q] or H[A(x]] =

H[B[#]), and o H* A = H* B. Hence, Eq. 246 has been proved. The proof of Eq. 247
in Goaadli

THEOREM 4. If A and B ate known wysiems, and it is desired to find an H with
the property that

H*A:R (248
then H, ii it exists, is unique.

In other words, there is one and only one system H that satisfies Eq, 248. (Of
course, there thay be no such systern. For example, if B = land A = N,. then, because
we cannot tell whether xZ is dve to X or -z, no H exivts.) [t s assumed that D, = DB'
and H is only defined with a domain DH that equals the range R A

To prove thia theorein, tuke H and (H+K) to be two systems that satisfy Eq. 248,
Then H * A = B, and (H+K) * A = B. Hence, by theorem { (Eq. 242), H* A - (H+K) %A =
B~B or K*A=0, or Kly] =0, with y = A[x] and x € D,. Therefore, by the defini~
tion of the zero system (see sec. 2.5), K = 0, for domain DK equnl (o the runge RA'
Hence the system H is unique, in this domain,

THEOREM 5. If A is a known pystem, and we Jesirce ic find an H which 15 .uch that

A*H=l (249)

then H, if it exigts, ix unique.
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To prove this theorem w2 precuscade Eq, 249 with H to obtain E » A * Y - M Iy
theorem 3 (Eq. 246), this operation is valid. Then we have

(H*A) *H = H (250)
by axiom 5 (Ey. 38). But, Eq. 250 in obviously colved by
H*A=1 {251}
and by theorem 4, Eq. 25! is uni ue. Now, applicatiun of theorem 4 to Eq. 251 shows
that H, If it exists, is unique. Hunce theorem 5 18 proved.
THEOREM 6. If AwH=1 (252)
then H% A =]
That A * B =] impliee H * A = 1 was shown in the proof of theorem 5.

THEOREM 7. If A and B are known systems, and we desire to find an H with the
property that

H+A=B (253)
then H=B=-A (254)

uniquely.
Substitution of Eq. 254 in Eq, 253 gives B-A+A =B, and so H=B~A is a

molution. To demonsirate uniqueness, two solutions are assumed and we use the same
proce.. =7 ~= in the rroof of th2oram 4.

6.3 FEEDBACK AND INVERSES

The feedback system that will be investigated ig shown in Fig. 28a. Thi= is a suf.
ficiently general system h-cause, rs was shown in section 2.8, any single-lnop fevipuni
system can be reduced to this form, followed by a feed-through system.

The system equation is L = I+ H * L. or after rearrangement,

(I-H)*L=1 (255)
This is recognized as an equation for L of the same forin as Eq. 249. From theorem 5

we know that L is unique. It exists, at least in some aense, because L is the fmedback
bystem and can be built, Furthermore, from theorem 6, we hiow that

L*(-H) = 1 (256)
Now, if
H=1-K (257)

then, by substituting Eq. 257 in Eqs. 255 and 256, we obtain
K*L-1-L*K (25e)
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Thus we have shown that 11 18 possible to use a feedback sysiem to construct the
unique inverse of o nonlinear syetem K. &An inverse !f_s'l of a system K satisfies the
property

-1 -l

K +#K=K*K =1

The feedback system of Fig. 28a is also an inversion system becaune we have shown
that

W) *LL*(-H -l
Hence the inversion problem and the feedback pr-hlom are essentially the same. There«
fore, we can write L = K™),

Ag it atands, this feedback sysiem for obtaining an inverse (see Fig. ibb) is nota
practical physical system because of the unity feedback, A possible way to overcome

] ]
? . AT Fig. 28, Feedback and inversion: (a) f{oed-
£ back system; (b) inversion system;
. (c) equivalent inversion sysiem.

m ]
- S

£

{e}
thia difficulty is to use the results of section 4, ! to produce the equiviient system shown
in Fig. 28b, where 5'1'1 is the inverse of the linear part of K, that is, K, and Ky
form the systern (K-K,).

The fact that the feedback system defines an algebraicaliy uniyue system, and that

the inversion system produces the unique inverse, does not exhaus! the uniqueness prob-
lem. Another uniqueness problem will be discussed in the next section.

6.4 INPUT.OUTPUT UNIQUENESS

It is quite easy to visurlize a nonlinear system in which the sune output is produced
by two different inputs. A simple exumple is found in ‘e no~-memory squarer. If we
could constrict an inverting feedback system of the fo1m of Fig. 28b fcr such a system,




Lere would be two possible outputs for a single input. Physically, such a situntion is
untenable, and the inversion system would exhibit some sort of erratic behavior.

This situation of two or more possible outputs for a single input is not limited to
inversion syatems because the inversion and feedback problems are ~zsentially the szme,
and hence a feedback system may alsn exhibit thie difficulty.

No-memory feedback or inversion systems are easily handled because the output
car be plotted as a function of the input. Therefore any lack of uniqueness at the output
is readily detected, In the feedhuck system of Fig. 28a the impulse regponses are
bounded functions, We shall show that for such systems the input-output relation must
be unique, if an outpui exists.

We shall consider the systemn of Fig. 28a in ne particular situation H = H, + H,, and
we shall briefly outline a technique for handling it th..t was described by Volterra (1),
Let the input be x({t), and let there be two possible outputs, f(t) and g(t), Then

f=x +H[f)]

and

g« x+Hg)
or

1= x+H,[t] + B,[f] {259)
and

g=v4+ H‘.’;-} b 1_»_12[3] {260)

Subtracting Eq. 259 from Eq. 260 ylelds

t~-g=H)f-g]+ H,[f] - Hyfq] (261)
But

B,[f] - B,la] = B, - B,7)
= Hytt-g?)
= H,((f+g)(1~g))
Thus Eq. 261 becomes
f-g=H,(f-g] + B+ (-g) (262)
or
p = H[p] + Hyl(f+g)p) (263)

where p = f-g. Equation 263 can also be writien
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p(t) = j hy(r) plt-v) dr +ff hytr . T ) {flt=r )4gt=7 )} pit-v,) dr dv, 1264)

where hl(t) and hz(tl,tz) are the impulse responses of ]jl and HZ' recpectively,
Now, define

kt,7) = h{r) = f hy(ry, tM{f(t=)) + glt-r,)} dv, (265)

and Eq. 264 becomes
plt) = fk.‘ T) plt=-t) dr (266)

Since hl(t) and hz(tl' tz) are ounded functions and f(t) and g(t) are assumed to exist
{that is, to be bounded), k(t, ) is & bounded function, Then, Eq. 266 can Le shown to have
& unique solution; that is, p(t) = 0. Therafore, f(t) = g(t), and {(t), the system output,
is unique.

This can be extended to the situation H = H, + H, +... + H, where the impulse
responses are bounded, with the result that the output is unique,

Certain unbounded impulse responaes can also be considered by this method. For
example, if [i= ﬂz = Al * gz. then it can be shown that the impulge response is
hz“l' tz) = nl(tl) a(tl -tz), where a, (t) s the impulse response of -41' and n,= 1. This is
an unbounded impulse response, and this case can be shown to be unique, The one place
where thia teat cr 1.1l 18 with H= N + K, where N is nosmemory, and K has memory
urr is zero. This case can axhibit a nonunigus input=outpul relation. It seenis to be a
fairly safe assumption that this is the only nonunique situation. In case of doubt, the
teat procedure outlined above can be used to teet for uniqueness.

It should be noted that the fact that the system output is unique does not guarantec
that the system is well behaved. The output of the system may become unbounded (fail
to exist), or some other instability, such as & limit cycle, may exist.

6.5 FUNCTIONAL TAYLOR'S SERIES

We have mentioned that the functional series is closely related to Taylor's series.
Here, this relation will be specified in more detail.

Consider a systern H with an input ax(t) starting at t = 0, where a is a constant,
Let f(tl) be the output at a time t = tl' The output will depend on a; therefore let ‘l
be implicit, and consider f as a function of a and write it as f(a).

Now we can expand f(a) in a Taylor's series about a = 0, Thum

2 n n+l
fla) = £(0) + a'(0) + 5 17(0) 4 ... 4 2. (Phigy ¢ B (itlio) (267)

where f(")(a) its the “lh derivutive of f(a), and 0 ir s, ae aumber between 0 and a.
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In particular, if the inpu. is x{t), then a = 1, and we have

€1 = 20) + £100) + 55 £7(0) + ..o + i 10y v b (V1) (£68)

Since the input is 0 when a = 0, th.s can be talled a "Taylor' s series about zero input."
The last term in the series is the error term and if it could be estimated, an idea of the
truncation error for Taylur's series could be obtained. Unfortunately, we have not
been nble to estimate this term.

Fig. 29. Feedback system.

In order to illustrate that Eq. 268 is indeed tho functional series that constitutes
the basis of this report, we shall consider the feedback aystem of Fig. 49, Then
t=x+ K[t] = H[x], and

f(a) = ax + K, [f(a)] + K,[f(a)] + K,[tla)] + ... (269)
Therefore
EWEE R SR B (270)

Since Eq, 270 is the feedback systew. v!ih zero input, f{0) = 0. Now, as we know from
linear theory,

& Kyltw)] = K )]
Also, by symmetry,

L g, ltie) = 3k, (P
o fsz(fl, r,) f@, t=7)) f(a, t-7,) dr dr,
. ff“z('n' 75) S {tta, tor (@, 1oy )} dv vy

= ff kylry 1-2){-:—‘ fa,t-,) f(a, t-7,) + f(a, t-7)) -g'; H“'t"’z)} drjdry
= K, (f'(a)f(a)+f(a)r*(a))

* 2K, (F'(af{a)
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Similarly,

d

3
as Kylf2)] 53(8%f ‘“’)

"

3K, (@) (a))

and 80 on, for the higher-order terms. Then
f'a) = x + l_(l[f'(u)] + 2K, (f'@)la) + ...

and

£1(0) = x + K, [£'(0)] + 2K, (1" O)(0)) + ...

But f(0) = 0, and 8o £'(0) = x + K,[f'(0)] and, after rearrangement, {'(0) = (1—51)'1[::].
Similarly,

£(0) = (zq-l_(l)" * K, © ((1-51"l>2> [x]

and so on, Substitution of f'(0). 1"(0), etc. in Eq. 268 shows that the resultant series
in the same an that obtained in section 2.8 (see Fig. 14).

dince the functional series is 8o closely related to Taylor's series, we should not
expect (hat the functionsl series would always converge, The functional series

HeH +H +... +H +...

converges for «~ i..ue X(t) if the vutput soricys

f(t) = fl(t) + fz(t) +..0004 fn(t) L

where f (t) = gn[x(t)], convarges.
For example, consider the nystem ..f Fig, 30, The cystem equation is

(L) = x(t) - ft t2(r) dv (271)
-0

When x(t) ir a step function, atcrting at t = O and with amplitude +1, it can be shown
that f(t) = 1/(1+t), for t 3 0, by solution of the differestial equation (Eq. 271), If the
functional series is developed for this series and the result of a unit positive step input
is obtained, we find that

) s1=t4t?-34,,, for t30

This series is not convergent for t > 1, but tha solution of the differential equation shows
that the output is well behaved. Therefore, if the output of a svetem, which is a alyzed
by the functiional series, {8 not convergent, we ftill cannot assume that the vutput of the
system exhibitle erratic behavior or becomes unbounded.
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INTEGRATQ®

Ee

Fig, 30. Simple feedback system.

Brilliant (4) studied the col. ‘ergence of the functional series und obhiained a conserva.
tive bounding procedure, His results can be exiended somewhat by replacing his norm,
[k, [l where

a 0
"kn" ../; LU /; lkn("'l"""'n)l d'fl e d‘l‘n

by & new norm, ||k, |, where

T T
"kn"T'./; ce '/; lkn('rl,...,vn)l dry oo, dry

In this case we must constrain our considerations of the output to the time interval
0 €t € T, rather thau to the interval 0 € t € o considered by Brilliant. (We assume
here that all inputs are zero before t = 0, and that the impulse reasponses are realiz-
able (zero before t < 0),)

At the present time, il appears that any general convergence test should be con-
servauve, ano ..t it {s best to consider the convergence of each particular case inde=
pumdently, As the example {llusirated, vonvergence difficulties can arise. From a
practical point of view, howsver, the representation is very unwieldy if the convergence
is not fairly rapid, But the rapidity of convirgence can usually be easily determined
in any particular problem by writing out a few termas,

6.6 THE ITERATION SERIES

Even if the rfunctional series that we have used in this report tails to converge, it
does not mean that the func‘ional representation fails, There i3 always the possibility
of finding move general functional series that will converge. In this section such a
series will be briefly discussed. This series will be called the "'iteration serics"
because it is formed by an iteration procedure.

Consider the feedback system of Fig. 31, with f = x + H[f] = L[x]. A [iret estimute,
t,‘”, could be made for {, where

f“) =X (272}
A second estimate is
f(2) =x+_)-_l[f(”]=x+§[x] (273
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and & third estimate is

f(s) 2 X1 u[f(z)]

= x + H[x+H[x]] (274)
In genera!, the nth estimate is
f(n) Xt H[f(n-l)] (275)
If we let
fm) ® Ly ] (276)

then L‘(n) is an approximation to the actual system L, and
Lu) el
Ly=1+H
Ly =1+ H* (+1)
by applying Eq. 276 to Eqs. 272, 273, and 274. In general,
Ly " 1+H* Loy (277)

In the limit as n= o, direct substitution of L(n) in the system equation, L =]+ 1 *L,
for Fig. 31, shows that the equation is satisfied. In practice L(n) would not be used
in the lmit. hut w7 be truncated at some point: that is, L(n) would be used witha
flnite n as an approximation to L.

Any physical feedback system has & delay around the loop. This delay is usually
too amall to be important, but it has an interesting effect on the iterution series. Let
the feedback element H be replaced by D * H, wheru D is a delay. 1f this is done, it
can be shown that the iteration scries is automatically truncated at some L ,, where
n depends on the length of the delay and on the time after the input has started at
which the output i{a being observed. This occurs Lecause the iteration procedure
of Equ, 272-275, with H replaced by D * H, is the actual sequence ui vperations in
*he system. In the first time interval, 0 to 5. where & iz the delay time, the output
is x(1) because the delay holds back the feedback. In the next interval, &to 28, the
output is x(t) + D * g[x(t)], and suv on for each interval. This is precisely the iteration

e

Fig. 31, Feedbuck system, Fig. 32, Yiegram of iteration series.
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procedure. This can also he visualized by means of Fig. 32 (which was suggested by
G. D. Zames). This syrtem is eyulvalent to the feedback system of Fig. 7}, with I}
replaced by D * H.

The itoration series, then, is closely tied in with the actual sequence of operations
in a feedback system. Therefore, it seems reasonable to asguue that if the iteration
series tends to become unbounded, the actual system output will tend to become
unhounded. (We note that the delay in a physical system will keep the output bounded
at all finite times, but it couid get larger as time increases and the gywxt~m would theu
be said to be unstable.) A ve.y simple examp!e of thig (s the system of Fig. 31 when
H=Al whore A is a consiant. Using the iteratinn series for this system ylelds

1(t) = x(t)(1+A+A%+A%. ) (278)

and this serisa bacomes unbounded if A » I, It /e known from linear theory that the
system is unstable if A > 1.

Thus, we mec that the iteratinn series is much more closely connected with tha
physical world tlien the functionsl Taylor's sories. As a practical tool it is not, now,
very useful because exporience has shown that, when the iteration series is rapidly
convergent, the functional Tuylor's series is also rapidly convergent, Howoever, it does
present the posaibility of using other functiona! series than the functivnal Taylor's
series,

The convergence of the iteration serieas can often be determined, If a linear feed-
back system (Fig. 31 with H = _ljl) hae an input that starts at t = 0, and che impulse
response hl(t) is bounded, then at any finite time t, the {teration aeries can be shown
to w. Cw Y Tt ul)-

Let us aspume for a feedbnr:k system (Fig. 31) with a nonlinear feedbuck element
H that the foliowing (Lipschitz) condition holds:

|H[x]=Hly]| < [K,[x-y]| (299)

where x and y are any input signals, and l_{l is some linear system with a bounded
impulse response. (Actually, the impulse response k l(t) need be bounded only over a
time interval 0 to T if we limit our consideration of the output to thia interval,) Then
wa can show that the iteration series for this nonlinear system _unverges at any finite
time after the input has started. Thia in done by appropriately bounding the terms of
the iteration series of the nonlinear system by the terms of the iteration meries of the
linear syatem obtained by replacing H by l-_:l. Then, since the iteration series for the
linear system is known to converge, the iteration series of the non)inear system wi:l
converge. Referring to the results of Section V, we recull that the output of such a
system iz unigue, and hence the iteration series converges to tha true output of the
nonlinear feedback system,

A system H that satiafies Eq. 279 might well be cailed a "saturati.n" aystem
because it is bounded by a linear system. An ordinary saturation curve (for exampile,

86




the flux-current craracter!stic of a magnetic material) is bounded by a linear curve,

6.7 CONTINUOUS SYSTEMS

Let us congider a system H with an input x(t) and an inpur y(t), From an intuitive
point of view, we could say that H is continuous if li[x(t)] and H[v{t)] are close tagether
and if x\t) and y(t) are clone together,

Brilliant (4) defined a much more rigorous concept of continuity, First, uefine a
distance belween input functions x{t) and y(t):

t
f {x(f)-y('r)} dr
t=-r

for r >0, Define another distance:

|B[x(t)] - H[y(4) |

between the outputs H[x(t)] and H[y(t)] Now we have & precise measurement of dis
tance, and so closeness and continuity can be rigorously deiined. The following defini-
tion is not the only possible definition of continuity, nor are these distances the only
possible distances that could be defined,

If we have a time-stationary system H, and bounded inputs x(t) and y(t),
Brilliant's definition of continuity can be stated: H is continuvus if for any ¢ >0,
thn;e exists a T >0, 8>0 (T sufficiently large, & sufficiently small), such that, if
I {®eis -4t} .-‘.1'! <8 for 0 &r €T, then |H[x(t)~H[y(t)]| < €. Brilliant also showed

l=-r
that if H is continuous, then for any € » 0 there is a polynomial system ﬂ( ¢’ °on-

sisting of the sum of a constant, a linear system with Lebesque integrable impulse
responss, and products of such linear systerus, such that, for any bounded input
x(1), lﬂ[x(t)]-lj(‘)[x(t)]l < €. Thatip to say, if { is continuous, then it can b closuly
approximated by

Hy+H; +... +H
where

Hi=) A By M
{ mystems

The sum is over a number of such products.

This is a sufficient condition only for a system H to be approxirxr "=d by the func.
tional representation. Certainly othai systems can be approximnated. 7The «tatament
is, however, a precise mathematical theorem describing a set of svstems that can be
expanded in the functional representation.
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6.2 CONCLUSION

In conclusion, it is appropriate to ..ention some of the future prospects for the fuar-
tivaal analysis of nonlinear systems.

First, of course, there is the applici:tion of this form of analysis to actual engi-
neering problems. Morsover, the general nature of this system representation makes
it a possible tool in the investigation of Beveral general problems. for ex~mpic, the
question of what « onatraints o4 thc open-loop responsc of & nonlinear feedback system
are necessary (o ensure the stabili.y of the closed loop,

The functional repredentation, as it now stande, still presenta problems. The
principal problem is that of obtaining a seriet !« has rapid convergence when the func.
tional Taylor'a series im not rapidly convergent, or not convergent at all,

A situation of considerable inierest occurs when non-Clauseian random sighals are
being investigated, COptimization problems then point to nonlinear systems, and the
functional repragel tation seams to he a good syatem description to use for such proh.
leme,
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AFPENDIX A

TRANSFORMS
1, SYSTEM TRANSFORMS

The on.-dimensional Fourier-transform pair is defined as

-]
Fljo) = f 1(t) o ™9%t at (A1)

-]
-]
= [ Fw o9t aw (A-2)
~ 00
A multidimensional generalization of this is the transform pair:
L] 0
Foljwpees .jwn) . j:u . ./:“ fn(tl, Ve tn) t:lt1 vee dty axp(-jultl-. o -jwntn)
(A=3)

\popw ™
fn(tl. ) ..,tn) = (2—"-) Iu e Iu Fn““l' ‘e .jwn) exp(+jwltl+. ; .+juntn) dul e dun

(A=4)
Another generalized relation is the multidimensional Parseval theorem (6):
" o
e .,'_“ iipe ety 'n“l"""n) aty v dty

1 n [ [ ]
= (ﬁ) '[‘ XK j:w Fﬂuwl' e ”J”n) nn(‘iwl' v ;an) dul o d”n (A-S)

where tn(tl,....tn) and F_(jw,, . ...an), and ‘n('l' v ty) and Gpliwy. . 1 jwy) are
Fourier-transform pairs.
If f{t)=0fort< 0 and

o0
'/; Ittty ] e dt < w (A-6)

where o is a real number, then we can define the unilateral Laplace-transform pair:

o0

Fl(s) =j; tt) e~ dt (A-7)
2 q+joo

o1 = gh e F® ot o (A-8)

whre » =2 ¢+ {w, The multidimensional generalizativ ol this is
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) rao oo
}‘n( ) ) 2 . "/0 fn(tl’ . ,tn) dtl dt" exp(-sltl-. ..—sn*n) {A-9)

£ ) ( ‘\)nf"”w f’“ﬁjw F | )
‘;---.‘ =1 BT e LAB b )
n''t n’ =\ &) I o 1 n
exp(+altl+...+sntn) dsl dan [(A=10)

where Tys +res O, Bre real nun:“ers, If fn“l‘ he .tn) {8 symimetrical, then CIRLE

d'n=¢n

2, ASSOCIATION OF VARIARLES

Asgume that we are given rnnl, ...,t") and its transform Fn[ll,...,ln). This
tranaform may be Fourjer (lfjldl), or Laplace. The problem is to find the transforn:
of fn“l' tz. 13. ey tn) from F'nl_sl. Ve ln). (Actually, we are associating any two vare
lables i, and t,, For convenience, take { = 1, j = 2, There is no Joss in generality.)
Call this transform Gn_l(ll. Byiove, 'n)' Now, by satting thE by in BEq, A-10, we have

1 \B 01+jeo crn+jca
rn('l‘tl‘tJ""'tn)’(ﬁT) fwl_i” ..-f'n-im Fn('ll"v;.n)

exp(+a1tl+lzt1+nst3+...untn) ds; ... dln (A-11)
The+

) 1\ b‘.‘,'iJ:: ,-vn-i-jm fwlﬂuo
fﬂ“l'tl"”'tr) ﬂ(:‘ﬁ) f,z-i“ nA-J'nulu 'l_Jw Fn('l' lcvu.n)

expl-o-(u‘uz ) dll} exp(+s b 4., .+lntn) dlz dl" {A-12)

Setting 8 +8, 50 gives
L\n rzﬂw o Hw T+ joo
fn“l"l'ta"""n) . (W) f..'z-j-n f -m f Fn(“l"'z"z"s""‘ 'n)

exPH-u,tl) dul} exp(+l3t3+. ..+nntn) d'z ‘e —hn

>n- fﬂjﬁf g fc ntie (3 Tyt iy
Y . -8, i ’
(an R . - lzn R e B

v By) dlz}duldns... do (A-13)

n
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whare ¢ is chosen o that the integral converges. Now

L \P=l potjm ez, tjw Tt
l.l'x(tl‘tl't.‘)""‘tn) =<é;}) ) f

o g=joo '/’3'5“’ "

c"\-jw
Go.ifep 830 00n By ) exp(+ad t) 48t . L 48 L) dtydt, L., dt,
(Awl4)
and hence, if s, is replaced hy u, and u, by Y in Eq, A-13, we have
+jne
n l(sl.l:,....,l ) = Zwif Fn(’l'“'“"r"'"n) du (A=15)
Specification of n r 2 gives Eq. 115,
3. FINAL-VALUE AND INITIAL-VALUE THEOREMS
Conaider a multidimensional function, tn(tl, Ve ,tn). and ite transform, Fn(’l' .an).

Define

o ©
€t ..., ln) -j; vea ./; a0ty oo eaty) expl=syt,e., =8t dty ... dtn {A-16)

Then tl.e “rat-order transform of ‘l“l"Z' oo 'n) is

a®
Gl(ll;lz. ‘e .,ln) = j; ‘1“1"'2‘ . ..,ln) exp(-lltl) dtl

= F8),-00,8) (A1)
Now, if we regard Byi000 5, BB fixed, ‘l“l"Z' ‘e ,lnb &and Gl(nl;lz, . ‘.un) make
a first-order transform pair. Then, from linear theory (9), we have

lim g, {(t,;8,,....8 )= lim G,(s ;8,,....8 )8 (A=18)
tl-wllz no . LI n ol

and therefore

lim "“l"t""" ) = um Fol)ocooo8) ) (A19)

ty=o0 -0

1 )=
But

[} [ -]
llxm ‘l“l"Z‘ R | ) -tlli.x.r; f j; fn(tl. . .tn) exp(-nztz-. e -untn) dtZ e dtn
|
-] rﬂ
= j; J!o 11:-':»‘ “'1' . ..,!n) exp(-s 15 . 'n‘n) dtz Ve dth (A-20)
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Therefore the transform of lim f (lj. e, t ) ds
tj=o n n

Hmo Fn‘al‘ Ve ,an) 8 fA-21)
B -

This justifies the limiting procedure used in rection 5, 4,
Successive use of Eq. A-2! shows that

tii_?; fn(t,..»..tn) = s“f‘o Fn"l""‘”n’ Byoooo8y, (A-22)
1 1
tn-ou ln-*O
Now
'Iliiﬂm f‘h)” KRR tl‘l) = ii': rn(t) (A-23l
(e

where rnm = f(n)(t. toouat), and o the final-value theorem of section 3. 4 is proved,
In a similar manner, the initialevalue theorem of section 3. 4 can be proved,
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APPENDIX B

PROBLEM DETAILS

In this appendix, we shall give furtier detaila for some of \he problemns of Sections M1
and V.

!, PROBLEMS OF SECTION 3,5
System A is given hy
K=N» H)
3 5
=H, +n3H +ngH,
"5] +53+55 (B-1)

where the coefficients associated with the nonlinear no-memory sysiem N = ] + Ny + Ny
are n, and ny. Since H, has a transform H/(84u), the traratcrms of the system K are

Kyto = ;1 : (B-2)
n:’l-!3 .
Ks(ll.lz.ls) = (B=3)
(ll+¢)(lz{'¢)(l3+¢)
ngH"
Kg(#po000, By} 2 — —2ee— (B-4)

(llﬂ) Ve (l5+¢)

by use of Eq. 90. The input is Re {x)*!}, and, irom section 3.3, the complex amplitud-
of the first-harmonic output is

K () + % K, (lw, jw, ~jw) +-:- Kgljw, jw, ju, =jw, =ju) (B.8)

The third-harmonic complex nutput amplitude is

1

T K3Uw Ju, Job + 7% Kyl ju Ju, Ju, -ju) (B-6}
and the fifth-harmonic complex output amplitude ia

T Kgliw, .02 Ju) (B-7)

Substituting the expressions fur the tiransforms (Eqs. B.2, B-3, and B.4), taking
« = 0, and defining B = H/e (the linear undimorted gain) gives the low«fr quency
amplitudes:

first-harmouic amplitude = B + % 11383)c3 + -:— n,L x5 (B-H)
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third-harmonic amglitude - _‘l .;31-‘.-‘}(34- ]% ngns"s (B-9)
1 5,5
{iftheharmouic ampiitude = 77 n5B X (13=10)
Defining
‘irat-harmonic distnrtion = ﬁrst-hnrmong amplitude - B (B~11)
third-harmonic distortion = third-harm%nig_ampmude_ (B-12)
fifth-harmonic amplitude
fifth-harmonic distortion - o r (B~13)
and substituting Eqe. B-~8 to B. 10 gives Eqa. 145-'47 of exumple 2,
Now the feedback sysiem B can be considered. The system equation ims
L"E*Lﬁ * (AL) (B-14)

where A is a gain constant, and I, represents the feedback sywtem. Substituting
Fq. 144 for N, taking

Lelytlpt o (B-15)

and determining L,, L,, etc. by the methods of section 2. 8 yields
=1 =2

L, * B, * (+ag)™! (B-16)
Ly - cpareliy) ™ *(;,f) (B17)
Ly = (1+AH,)™" * (sn,(z,f (AL ¢ 9L ) (B-18)

for the first threc terms. (All even terms are zero.)
The transforms that are fcund by the relations in section 2.9, are:

L) =5 (B-19)

. ll432+33+AH B H

L.(s,,s 1 - H
k Mt Rt T | .l+-z+-3+¢+m Jll+¢+KHl2+u+AHls+n+AH

(B.20)
8, +... +8, +a
Lty AH
Lg(yood) = gp T va, vav AR | Inshaiey) L) B, tu b e

X L3(l1+bz+l3) + “5"'1('1) Ll(’s)} (B=21)

Calculating the distortion ratios as we did in Eqs, B8 to B«13 gives kqs. 143,
149, and 150 of example 2. If the conditions on 2 size of the distortion r.tios

e
e



Riven in example 3 are mci, then these three terms of the ser.es for 1. will be suiti-
cient,

2. PROBLEMS OF SECTIONS 3.6 AND 3.7
From the transform N =1+ ES + N, the system equation is
L= AN*H) * (-L) (B-22)

where A is the gain constant, H 1 ls an ideal integrator, and

N(y) = sin y {B-23)
Taking
L=LytLly+... (B-24)

and applying the methodg of section 2, 6 gives

L, = (LhAH,) * AH, (B.25)
Sl AL\

Ly = ~(LHAH)) " * 5 (A 1-:) (B-26)

L, » (I+A “*-‘-A(‘LJLN“Ls B2?)

Ly = (I+AH)) 7 AR —1) Lyt 31(:5 -1) (B-2

The transforms are found by ihe rnlutions in section 2.9, and arc given in Eqs. 152,
153, and 154 of example 3. The output trunsforms are given in Eqs. 156, 157, and 158.

The output transform Rs(l’ is obtained froin Eq, 157, by the association procedure,
as follows:

Roo(,,8,,8.) = AS'.*' (ll+lz+l3) ) 1 1
(3710 "2 " 18 b, T U, T8yt A S (8,0R) 8,(8,+A) #,(0,+A)

L 483 (syrnyiey) T R U U TR
- Tr'_l*"z""am 5,875 42 sz'i_;ﬂ .;"‘—rr

EJ )
(B-28)
Asmociating s, and 8, gives
3 8, +8 3
. .8 118 ) 1.2 1 _
R,(s) BRa s, +A sl(nluﬂ{sz -2+A+32+MJ>
.8 it [y a1 2 o1 (B-29)
msl-rlzﬂ 5 '1*1 v, 32+K |2+ZI -

and aszrciating 5 and s, gives
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3
.5 8 L3 3 ____1_
Ryls) = AAZ s+7‘({s B+A 3% 2A s+3A} (B-30)
Now,

SsAz. "X+’ .o "5) \ 1
2 B+ +|5+A 8, +8,4 53+A al(a:m)

R(B)(.l“.'“s) B -

1
R (B-31)

where the second term with coefficient 'sli has been neglected because it is small. Car-
rying out the association procedure on this basis gives

5
18 s J1_ 05 5§ 8 .4 __, 05 3A
Ryls) = U p+'§{| s+A S+2AYE A -+4A+|+5K'("M
bA 3A
+ - (B.32)
(5424)%  (a+3A)°
The transform of the output is
R(s) = R (w) + R,(8) + Ry(8) (B~33)

an+ the terms can be Lollec‘ed and inverted by the ususl linmar methoda to give the
output %} v 18 given in Ba, 129 in oxample 4), Only ong of the multiple~order poles
gives a mignificant contribution if A » i,

3. PROBLEMS OF SECTION 5.8

The transform of lzltl.tz) in

2
L,(s,.6,) = AB_ (B34)
('l+'i+m('l "‘“'z"'“'\
and we want to ralcuiste
flz('r: 1) dr (B.1+)

by the method of wection 8.4, Therefore we associate L7 and "2 in Eq. B-34, which
gives
2
. A -g—— {(B-30)
(s+p)(n+2a)

Then

76




2
[‘1 (T, 1) dT = lim A’B
L)

2 =0 (87B)8t20)
_AB
T 2a8
T 2 (R-37)
if B =@, and so the first term of Eq, 218 is
2
2
(9,—) (B~38)

Next, we want to calculate the second term of Eq, 218. Equation 219 is the trans-
form of

folz(vlﬂ’z) 1,{T #7), Tytry) dr,dr, {B~139)

and we want to associate " and 5, in Eq. 219 ('I‘l and Tz in Eq. B-39). Thus

4.2
! 1 1
2Lp(=R ) =8p) Lyl 0p) = (=8 =8 +8) (s, +8,4B) 4,2 {--l Tet g c}

1 1
{-lz i Nt a} (B-40)
Associating 5, and a, gives
ag? [
A'B 1 1 1 1 24,2 1 1 -
T3at B TAP -t e "8+ Za} = ZA"B (_—.zwi)(_'i*“z) (Z-40)

This is the transform of the second term of Eq. 218, Setting s = jw and combining the
two terma gives the transform of ¢f('1‘). whiich Is the spectrum, of(u). The result is
Eq. 220 in example 5,

4. PROBLEMS OF SECTION 5,6

First, we obtain Eq. 222, Linear system analysis shows that
E(s} = 537 X(s) (B~42)

where E(s) and X(s) are the tranaformes of e(t) and x(t), respectively. But

xX(s) = 7 B5 Vi) (B-43)

whece Vis) is white Gauseian noise. and R/ls+p), from Ox(u) in Eq. 221, i
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the shaping filter. Then
e =K, [y] (T3 dd)

where K, from Eqs. B-42 and B-43, has s veansform
1

s _.__B_ o

+ATHE (B2
Now

‘—2‘;') L] / lr.](-r) kl(ﬂ dr (Budé)

. ———————— —

and, by application of the output uverages of sectivn 5, 2, (ez(t) is ={t) e(t+T) evaluated
at T = 0), The transtorm of k,(t‘) kl(tz) in
Es Ea
i 3
(s +AT(n 4B} (s +A}(s,%B) (B-47)

and by assooiating » and s, the transform of kl(t) kl"z) is

2 2 2
B A 2 s
(A-p) {.‘ﬁ Z '.J%x*nzp} (B-48)

Amssuming that A » 8, we have

2 2
H B" _A
Cumim TR

. ?X (Bua™

which is Eq, 222 in examplc 6, Equat{ions 223 and 224 are obtained in a similar manner,
(Equation B.49 can be obtained by mstandard linear methods (8); it is derived here by the
methods of Section V, in order to illustrote this application to linear analyeis,)

The nonlinear compensated aystem will row be considered. ‘The firsi two syatem
transforma, Ll(lb and Ls(ll.lz, l,). are given in Eqe. 105 and 106, The output error
is given by

elt) = £(t) ~ x(t) (B- 50)

where x(t) is related to the white Gaussian y(t) by Eq, B<43, We can show (assurning
that n, is sufficiently amall that only el(t) and e,(t) contribute aignificantly to the error
a(t)) that

eft) = e,t) + ostt) (B-~51)
where

e - K [y] (B.52)

98




e, = K,ly] (13-534)
and 51 and 53 have transforms

B

Kjfm=5¥a& (B-54)
An
3 B B B
Ky(8).5,,8,) =l1+lz+83+l\ 5, TAS, TAATA (B~-58)
Here, we have taken # = 0, Then
e2(t) = e3(1) + 20, (1) e,(1) + e3(1) (B-36)

where of(t) is given in Eq, B-49, The other two terms of oi(t) can be computed by

the methods of mection 5. 4, __
To {llustrate this point we pnall compuic e l(t) ez(t). Now

(1) e, = (K, Ky Y5957
. Sf kylry) "3‘-"1' Ty '3) drydr, (B=57)
from IBq. 199, with T =0, Let

fk.'&“' 1, r) dr = b(t) (B-38)

The transform of this term, B(s), has been wurked out in Fqs. £13 and 214.216, Taking
K= ABsn, and a= 8= A in Fq, 216, gives

3
b'n 2
B} = —- (;i-s) (B-59)

The transform of kl(tl) b(tz) in

B’n 2
B 3 1
8+ A2 ("z + K) (B=-60)

Now we can complete the evaluation of Eq. B«5%7 by ansociating L and ., in
Eq, B-60 to give

3Bhy, 1\
2 () (B-61)

"Than
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______ ~ 3B4n3 L\
J.{t 1 {t) = lim ——;— <~->
1 10 = U =

4
Bn,

3
] {Ba62)
T2

—

In & aimilar manner, eg(t) can he cotnputed,

5, PROBLEMS OF SECTION 5.9

The denired operation on y(t} is a predictor P, -ith the desired output
d(t) = y(1+T)
= Ply(t)

= f&(-r-T) ylt-r) dr {B-613)

P, therefore, has an impulse response p(t) = §(t~T), The white Gaussian x(t) is
obtained by operating on y(t) to produce

x = (LI'*H") [v] (B-64)
whence the ger:.~ ! operation on x(t) to produce d(t) is
E % (NHL)) » P * (N #Ny) * L)
FIFARS JYCEY (B.65)

This operation is the sum of a first-order system and a third-order systeni, and the
impulae reaponses are

1,(t4T) (B=66)
and
1 l(tlﬂ‘) lz“z*‘T) 13(t3+’r) (B=67)

where llm is the impulse response of ;,1.
Inverilug Ll(n) in Eq, 233 and applying Eq. 230 gives a best realizable rystem H,
with

He L’“) + ﬁ(n (B-68)
Hy<BotH)) (B~69)
Bioy 2 Hy gt 3Hy, + 3, + 1, , (B-70)
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Then the optimum output f(t) is given by
£ = H(x]
i a=!
;(E o (L) ) tv) (B-71)
Working out the impulse resp~nses of H by means of Eq. 231 shows tha,
geLlentomeg, ont (Ba72)

The detailed nature of M and 51 are given .an Eys, 235-239 i{n example 8,
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